Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Research Article
  • Published:

Absence of association between a polymorphic GGC repeat in the 5′ untranslated region of the reelin gene and autism

Abstract

Autism is a complex neurodevelopmental disorder with severe cognitive and communication disabilities, that has a strong genetic predisposition.1 Reelin, a protein involved in neuronal migration during development, is encoded by a gene located on 7q22,2 within the candidate region on 7q showing increased allele sharing in previous genome scans.3–8 A case/control and family-based association study recently reported a positive association between a trinucleotide repeat polymorphism (GGC) located in the 5′ untranslated region (UTR) of the reelin gene and autism.9 We performed a transmission disequilibrium test (TDT) analysis of the 5′UTR polymorphism in 167 families including 218 affected subjects (117 trios and 50 affected sib pairs) and found no evidence of linkage/association. Our results do not support previous findings and suggest that this GGC polymorphism of the reelin gene is unlikely to be a major susceptibility factor in autism and/or genetic heterogeneity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Lamb JA, Moore J, Bailey A, Monaco AP . Autism: recent molecular genetic advances Hum Mol Genet 2000; 9: 861–868

    Article  CAS  PubMed  Google Scholar 

  2. DeSilva U, D'Arcangelo G, Braden VV, Chen J, Miao GG, Curran T et al. The human reelin gene: isolation, sequencing, and mapping on chromosome 7 Genome Res 1997; 7: 157–164

    Article  CAS  PubMed  Google Scholar 

  3. International Molecular Genetic Study of Autism Consortium. A full genome screen for autism with evidence for linkage to a region on chromosome 7q Hum Mol Genet 1998; 7: 571–578

  4. Philippe A, Martinez M, Guilloud-Bataille M, Gillberg C, Rastam M, Sponheim E et al. Genome-wide scan for autism susceptibility genes. Paris Autism Research International Sibpair Study Hum Mol Genet 1999; 8: 805–812

    Article  CAS  PubMed  Google Scholar 

  5. Ashley-Koch A, Wolpert CM, Menold MM, Zaeem L, Basu S, Donnelly SL et al. Genetic studies of autistic disorder and chromosome 7 Genomics 1999; 61: 227–236

    Article  CAS  PubMed  Google Scholar 

  6. Barrett S, Beck JC, Bernier R, Bisson E, Braun TA, Casavant TL et al. An autosomal genomic screen for autism. Collaborative linkage study of autism Am J Med Genet 1999; 88: 609–615

    Article  CAS  PubMed  Google Scholar 

  7. Buxbaum JD, Silverman JM, Smith CJ, Kilifarski M, Reichert J, Hollander E et al. Evidence for a susceptibility gene for autism onchromosome 2 and for genetic heterogeneity Am J Hum Genet 2001; 68: 1514–1520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. International Molecular Genetic Study of Autism Consortium. A genomewide screen for autism: strong evidence for linkage to chromosomes 2q, 7q, and 16p Am J Hum Genet 2001; 69: 570–581

  9. Persico AM, D'Agruma L, Maiorano N, Totaro A, Militerni R, Bravaccio C et al. Reelin gene alleles and haplotypes as a factor predisposing to autistic disorder Mol Psychiatry 2001; 6: 150–159

    Article  CAS  PubMed  Google Scholar 

  10. Bailey A, Le Couteur A, Gottesman I, Bolton P, Simonoff E, Yuzda E et al. Autism as a strongly genetic disorder: evidence from aBritish twin study Psychol Med 1995; 25: 63–77

    Article  CAS  PubMed  Google Scholar 

  11. Steffenburg S, Gillberg C, Hellgren L, Andersson L, Gillberg IC, Jakobsson G et al. A twin study of autism in Denmark, Finland, Iceland, Norway and Sweden J Child Psychol Psychiatry 1989; 30: 405–416

    Article  CAS  PubMed  Google Scholar 

  12. Ritvo ER, Jorde LB, Mason-Brothers A, Freeman BJ, Pingree C, Jones MB et al. The UCLA-University of Utah epidemiologic survey of autism: recurrence risk estimates and genetic counseling Am J Psychiatry 1989; 146: 1032–1036

    Article  CAS  PubMed  Google Scholar 

  13. Pickles A, Bolton P, Macdonald H, Bailey A, Le Couteur A, Sim CH et al. Latent-class analysis of recurrence risks for complex phenotypes with selection and measurement error: a twin and family history study of autism Am J Hum Genet 1995; 57: 717–726

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Risch N, Spiker D, Lotspeich L, Nouri N, Hinds D, Hallmayer J et al. A genomic screen of autism: evidence for a multilocus etiology Am J Hum Genet 1999; 65: 493–507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Liu J, Nyholt DR, Magnussen P, Parano E, Pavone P, Geschwind D et al. A genomewide screen for autism susceptibility loci Am J Hum Genet 2001; 69: 327–340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Teitelbaum P, Teitelbaum O, Nye J, Fryman J, Maurer RG . Movement analysis in infancy may be useful for early diagnosis of autism Proc Natl Acad Sci USA 1998; 95: 13982–13987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Courchesne E . Brainstem, cerebellar and limbic neuroanatomical abnormalities in autism Curr Opin Neurobiol 1997; 7: 269–278

    Article  CAS  PubMed  Google Scholar 

  18. Bailey A, Luthert P, Dean A, Harding B, Janota I, Montgomery M et al. A clinicopathological study of autism Brain 1998; 121: 889–905

    Article  PubMed  Google Scholar 

  19. Fatemi SH . Reelin mutations in mouse and man: from reeler mouse to schizophrenia, mood disorders, autism and lissencephaly Mol Psychiatry 2001; 6: 129–133

    Article  CAS  PubMed  Google Scholar 

  20. Fatemi SH, Earle JA, McMenomy T . Reduction in Reelin immunoreactivity in hippocampus of subjects with schizophrenia, bipolar disorder and major depression Mol Psychiatry 2000; 5: 654–663

    Article  CAS  PubMed  Google Scholar 

  21. Guidotti A, Auta J, Davis JM, Gerevini VD, Dwivedi Y, Grayson DR et al. Decrease in reelin and glutamic acid decarboxylase67 (GAD67) expression in schizophrenia and bipolar disorder: a postmortem brain study Arch Gen Psychiatry 2000; 57: 1061–1069

    Article  CAS  PubMed  Google Scholar 

  22. Hong SE, Shugart YY, Huang DT, Shahwan SA, Grant PE, Hourihane JO et al. Autosomal recessive lissencephaly with cerebellar hypoplasia is associated with human RELN mutations Nat Genet 2000; 26: 93–96

    Article  CAS  PubMed  Google Scholar 

  23. Rice DS, Curran T . Mutant mice with scrambled brains: understanding the signaling pathways that control cell positioning in the CNS Genes Dev 1999; 13: 2758–2773

    Article  CAS  PubMed  Google Scholar 

  24. Sham PC, Curtis D . An extended transmission/disequilibrium test (TDT) for multi-allele marker loci Ann Hum Genet 1995; 59: 323–336

    Article  CAS  PubMed  Google Scholar 

  25. Ohshima T, Ogawa M, Veeranna, Hirasawa M, Longenecker G, Ishiguro K et al. Synergistic contributions of cyclin-dependant kinase 5/p35 and Reelin/Dab1 to the positioning of cortical neurons in the developing mouse brain Proc Natl Acad Sci USA 2001; 98: 2764–2769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sheldon M, Rice DS, D'Arcangelo G, Yoneshima H, Nakajima K, Mikoshiba K et al. Scrambler and yotari disrupt the disabled gene and produce a reeler-like phenotype in mice Nature 1997; 389: 730–733

    Article  CAS  PubMed  Google Scholar 

  27. Hiesberger T, Trommsdorff M, Howell BW, Goffinet A, Mumby MC, Cooper JA et al. Direct binding of Reelin to VLDL receptor and ApoE receptor 2 induces tyrosine phosphorylation of disabled-1 and modulates tau phosphorylation Neuron 1999; 24: 481–489

    Article  CAS  PubMed  Google Scholar 

  28. Mallamaci A, Mercurio S, Muzio L, Cecchi C, Pardini CL, Gruss P et al. The lack of Emx2 causes impairment of Reelin signaling and defects of neuronal migration in the developing cerebral cortex J Neurosci 2000; 20: 1109–1118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ringstedt T, Linnarsson S, Wagner J, Lendahl U, Kokaia Z, Arenas E et al. BDNF regulates reelin expression and Cajal–Retzius cell development in the cerebral cortex Neuron 1998; 21: 305–315

    Article  CAS  PubMed  Google Scholar 

  30. Lord C, Rutter M, Le Couteur A . Autism Diagnostic Interview-Revised: a revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders J Autism Dev Disord 1994; 24: 659–685

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the patients and their families who made this research possible. This work was supported by the INSERM, the Assistance Publique-Hopitaux-de-Paris (PHRC AOM95076 and CRC No. 932413), and the Swedish Medical Research Council (grant No. K97-21X-11251-03CK). SL received financial support from Pfizer France (‘Project Cabanis’). We are grateful to Christiane Penet, Yolaine Pothin, and Jacqueline Bou for technical assistance at the DNA and cell bank from the INSERM U289 (IFR des Neurosciences, Hôpital Pitié-Salpêtrière) and to Nathalie Griffon (INSERM U109).

Author information

Authors and Affiliations

Author notes

  1. Paris Autism Research International Sibpair Study: France. Department of Psychiatry, Hôpital Albert Chenevier et Henri Mondor, Créteil: Marion Leboyer, Anne Philippe; INSERM U513, Faculté de Médecine, Créteil: Catalina Betancur; Service de Psychopathologie de l'Enfant et l'Adolescent, Hôpital Robert Debré, Paris: Catherine Colineaux, Nadia Chabane, Marie-Christine Mouren-Siméoni; INSERM U289, Hôpital de la Salpétrière, Paris: Alexis Brice. Sweden. Department of Child and Adolescent Psychiatry, Göteborg University, Göteborg: Christopher Gillberg, Maria Råstam, Carina Gillberg, Agneta Nydén. Norway. Centre for Child and Adolescent Psychiatry, University of Oslo, Oslo: Eili Sponheim, Ingrid Spurkland; Department of Pediatrics, Rikshospitalet, University of Oslo, Oslo: Ola H Skjeldal. USA. Department of Pediatrics, Georgetown University School of Medicine, Washington DC: Mary Coleman; Children's National Medical Center, George Washington University School of Medicine, Washington, DC: Philip L Pearl; New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York: Ira L Cohen, John Tsiouris. Italy. Divisione di Neuropsichiatria Infantile, Azienda Ospedaliera Senese, Siena: Michele Zappella, Grazia Menchetti, Alfonso Pompella. Austria. Department of General Psychiatry, University Hospital, Vienna: Harald Aschauer. Belgium. Centre de Génétique Humaine, Institut de Pathologie et de Génétique, Gerpinnes, Loverval: Lionel Van Maldergem.

    Authors

    Consortia

    Corresponding author

    Correspondence to M O Krebs.

    Rights and permissions

    Reprints and permissions

    About this article

    Cite this article

    Krebs, M., Betancur, C., Leroy, S. et al. Absence of association between a polymorphic GGC repeat in the 5′ untranslated region of the reelin gene and autism. Mol Psychiatry 7, 801–804 (2002). https://doi.org/10.1038/sj.mp.4001071

    Download citation

    • Received:

    • Accepted:

    • Published:

    • Issue Date:

    • DOI: https://doi.org/10.1038/sj.mp.4001071

    Keywords

    This article is cited by

    Search

    Quick links