Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Immediate Communication
  • Published:

The axonal chemorepellant semaphorin 3A is increased in the cerebellum in schizophrenia and may contribute to its synaptic pathology

Abstract

The neuropathological features of schizophrenia are suggestive of a developmentally induced impairment of synaptic connectivity. Semaphorin 3A (sema3A) might contribute to this process because it is a secreted chemorepellant which regulates axonal guidance. We have investigated sema3A in the cerebellum (an area in which expression persists in adulthood), and measured its abundance in 16 patients with schizophrenia and 16 controls. In adults, sema3A was predominantly localized to the inner part of the molecular layer neuropil, whereas infants and rats showed greater labelling of Purkinje cell bodies. Sema3A was increased in schizophrenia, as shown by enzyme-linked immunosorbent assay (+28%; P<0.05) and immunohistochemistry (+45%; P<0.01). We also measured reelin mRNA, since reelin is involved in related developmental processes and is decreased in other brain regions in schizophrenia. Reelin mRNA showed a trend reduction in the subjects with schizophrenia (−26%; P=0.07) and, notably, was negatively correlated with sema3A. Sema3A also correlated negatively with synaptophysin and complexin II mRNAs. The results show that sema3A is elevated in schizophrenia, and is associated with downregulation of genes involved in synaptic formation and maintenance. In this respect, sema3A appears to contribute to the synaptic pathology of schizophrenia, perhaps via ongoing effects of persistent sema3A elevation on synaptic plasticity. The findings are consistent with an early neurodevelopmental origin for the disorder, and the reciprocal changes in sema3A and reelin may be indicative of a pathogenic mechanism that affects the balance between trophic and inhibitory factors regulating synaptogenesis.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Harrison PJ . The neuropathology of schizophrenia. A critical review of the data and their interpretation. Brain 1999; 122: 593–624.

    Article  Google Scholar 

  2. Honer WG, Young C, Falkai P . Synaptic pathology. In: Harrison PJ, Roberts GW (eds). The Neuropathology of Schizophrenia. Progress and Interpretation. Oxford University Press: Oxford, 2000, pp 105–136.

    Google Scholar 

  3. Mirnics K, Middleton FA, Marquez A, Lewis DA, Levitt P . Molecular characterization of schizophrenia viewed by microarray analysis of gene expression in prefrontal cortex. Neuron 2000; 28: 53–67.

    Article  CAS  Google Scholar 

  4. Weinberger DR . Schizophrenia. From neuropathology to neurodevelopment. Lancet 1995; 346: 552–557.

    Article  CAS  Google Scholar 

  5. Harrison PJ . Schizophrenia: a disorder of neurodevelopment? Curr Opin Neurobiol 1997; 7: 285–289.

    Article  CAS  Google Scholar 

  6. McGlashan TH, Hoffman RE . Schizophrenia as a disorder of developmentally reduced synaptic connectivity. Arch Gen Psychiatry 2000; 57: 637–648.

    Article  CAS  Google Scholar 

  7. Tessier-Lavigne M, Goodman CS . The molecular biology of axon guidance. Science 1996; 274: 1123–1133.

    Article  CAS  Google Scholar 

  8. Rubenstein JLR, Anderson S, Shi LM, Miyashita-Lin E, Bulfone A, Hevner R . Genetic control of cortical regionalization and connectivity. Cerebr Cortex 1999; 9: 524–532.

    Article  CAS  Google Scholar 

  9. Yu TW, Bargmann CI . Dynamic regulation of axon guidance. Nat Neurosci 2001; 4 (Suppl): 1169–1176.

    Article  CAS  Google Scholar 

  10. Grunwald IC, Klein R . Axon guidance: receptor complexes and signaling mechanisms. Curr Opin Neurobiol 2002; 12: 250–259.

    Article  CAS  Google Scholar 

  11. Kolodkin AL . Semaphorins: mediators of repulsive growth cone guidance. Trends Cell Biol 1996; 6: 15–21.

    Article  CAS  Google Scholar 

  12. Semaphorin Nomenclature Committee . Unified nomenclature for the semaphorins/collapsins. Cell 1998; 97: 551–552.

    Google Scholar 

  13. Bagnard D, Lohrum M, Uziel D, Püschel A, Bolz J . Semaphorins act as attractive and repulsive guidance signals during development of cortical projections. Development 1998; 125: 5043–5053.

    CAS  PubMed  Google Scholar 

  14. Steup A, Ninnemann O, Savaskan NE, Nitsch R, Puschel AW, Skutella T . Semaphorin D acts as a repulsive factor for entorhinal and hippocampal neurons. Eur J Neurosci 1999; 11: 729–734.

    Article  CAS  Google Scholar 

  15. Nakamura F, Kalb RG, Strittmatter SM . Molecular basis of sema-phorin-mediated axon guidance. J Neurobiol 2000; 44: 219–229.

    Article  CAS  Google Scholar 

  16. Raper JA . Semaphorins and their receptors in vertebrates and invertebrates. Curr Opin Neurobiol 2000; 10: 88–94.

    Article  CAS  Google Scholar 

  17. Bagnard D, Chounlamountri N, Püschel AW, Bolz J . Axonal surface molecules act in combination with semaphorin 3A during establishment of corticothalamic projections. Cerebr Cortex 2001; 11: 278–285.

    Article  CAS  Google Scholar 

  18. Polleux F, Morrow T, Ghosh A . Semaphorin 3A is a chemoattractant for cortical apical dendrites. Nature 2000; 404: 567–573.

    Article  CAS  Google Scholar 

  19. Whitford KL, Dijkhuizen P, Polleux F, Ghosh A . Molecular control of cortical dendrite development. Annu Rev Neurosci 2002; 25: 127–149.

    Article  CAS  Google Scholar 

  20. Shirvan A, Ziv I, Fleminger R, Shina R, He Z, Brudo I et al. Semaphorins as mediators of neuronal apoptosis. J Neuro-chem 1999; 73: 961–971.

    CAS  Google Scholar 

  21. Bagnard D, Vaillant C, Khuth S-T, Dufay SL, Lohrum M, Püschel AW et al. Semaphorin 3A-vascular endothelial growth factor-165 balance mediates migration and apoptosis of neural progenitor cells by the recruitment of a shared receptor. J Neurosci 2001; 21: 3332–3341.

    Article  CAS  Google Scholar 

  22. Giger RJ, Pasterkamp RJ, Heijnen S, Holtmaat A, Verhaagen J . Anatomical distribution of the chemorepellant semaphorin III/collapsin-1 in the adult rat and human brain: predominant expression in structures of the olfactory–hippocampal pathway and the motor system. J Neurosci Res 1998; 52: 27–42.

    Article  CAS  Google Scholar 

  23. Andreasen NC . A unitary model of schizophrenia—Bleuler's ‘fragmented phrene’ as schizencephaly. Arch Gen Psychiatry 1999; 56: 781–787.

    Article  CAS  Google Scholar 

  24. Eastwood SL, Cotter D, Harrison PJ . Cerebellar synaptic protein expression in schizophrenia. Neuroscience 2001; 105: 219–229.

    Article  CAS  Google Scholar 

  25. Costa E, Davis J, Grayson DR, Guidotti A, Pappas GD, Pesold C . Dendritic spine hypoplasticity and downregulation of reelin and GABAergic tone in schizophrenia vulnerability. Neurobiol Dis 2001; 8: 723–742.

    Article  CAS  Google Scholar 

  26. Rice DS, Curran T . Role of the reelin signaling pathway in central nervous system development. Annu Rev Neurosci 2001; 24: 1005–1039.

    Article  CAS  Google Scholar 

  27. Rice DS, Nusinowitz, Azimi AM, Martinez A, Soriano E, Curran T . The reelin pathway modulates the structure and function of retinal synaptic circuitry. Neuron 2001; 31: 929–941.

    Article  CAS  Google Scholar 

  28. Quattrocchi CC, Wannenes F, Persico AM, Ciafre SA, D'Arcangelo G, Farace MG et al. Reelin is a serine protease of the extracellular matrix. J Biol Chem 2002; 277: 303–309.

    Article  CAS  Google Scholar 

  29. Impagnatiello F, Guidotti AR, Pesold C, Dwivedi Y, Caruncho H, Pisu MG et al. A decrease of reelin expression as a putative vulnerability factor in schizophrenia. Proc Natl Acad Sci USA 1998; 95: 15718–15723.

    Article  CAS  Google Scholar 

  30. Guidotti A, Auta J, Davis JM, Gerevini VD, Dwivedi Y, Grayson DR et al. Decrease in reelin and glutamic acid decarboxylase67 (GAD67) expression in schizophrenia and bipolar disorder. Arch Gen Psychiatry 2000; 57: 1061–1069.

    Article  CAS  Google Scholar 

  31. Duvernoy HM . The Human Brain Stem and Cerebellum. Surface, Structure, Vascularization, Three-Dimensional Sectional Anatomy with MRI. Springer-Verlag, Vienna, 1995.

    Google Scholar 

  32. Romanczyk TB, Shannon Weickert C, Webster MJ, Herman MM, Akil M, Kleinman JE . Alterations in trkB mRNA in the human prefrontal cortex throughout the lifespan. Eur J Neurosci 2002; 15: 269–280.

    Article  CAS  Google Scholar 

  33. Eastwood SL, Burnet PWJ, McDonald B, Clinton J, Harrison PJ . Synaptophysin gene expression in human brain: a quantitative in situ hybridization and immunocytochemical study. Neuroscience 1994; 59: 881–892.

    Article  CAS  Google Scholar 

  34. Pesold C, Impagniatello F, Pisu MG, Uzunov DP, Costa E, Guidotti A et al. Reelin is preferentially expressed in neurons synthesizing γ-aminobutyric acid in cortex and hippocampus of adult rats. Proc Natl Acad Sci USA 1998; 95: 3221–3226.

    Article  CAS  Google Scholar 

  35. Adams RH, Lohrum M, Klostermann A, Betz H, Püschel AW . The chemorepulsive activity of secreted semaphorins is regulated by furin-dependent proteolytic processing. EMBO J 1997; 16: 6077–6086.

    Article  CAS  Google Scholar 

  36. Klostermann A, Lohrum M, Adams RH, Püschel AW . The chemorepulsive activity of the axonal guidance signal semaphorin D requires dimerization. J Biol Chem 1998; 273: 7326–7331.

    Article  CAS  Google Scholar 

  37. Rabacchi SA, Solowska JM, Kruk B, Luo Y, Raper JA, Baird DH . Collapsin-1/semaphorin-III/D is regulated developmentally in Purkinje cells and collapses pontocerebellar mossy fiber neuronal growth cones. J Neurosci 1999; 19: 4437–4448.

    Article  CAS  Google Scholar 

  38. Derer P, Derer M, Goffinet A . Axonal secretion of reelin by Cajal-Retzius cells: evidence from comparison of normal and RelnOrl mutant mice. J Comp Neurol 2001; 440: 136–143.

    Article  CAS  Google Scholar 

  39. Harrison PJ . The neuropathological effects of antipsychotic drugs. Schizophr Res 1999; 40: 87–99.

    Article  CAS  Google Scholar 

  40. Davidsson P, Gottfries J, Bogdanovic N, Ekman R, Karlsson I, Gottfries CG . The synaptic-vesicle-specific proteins rab3a and synaptophysin are reduced in thalamus and related cortical brain regions in schizophrenic brains. Schizophr Res 1999; 40: 23–29.

    Article  CAS  Google Scholar 

  41. Fournier AE, Strittmatter SM . Repulsive factors and axon regeneration in the CNS. Curr Opin Neurobiol 2001; 11: 89–94.

    Article  CAS  Google Scholar 

  42. Gavazzi I . Semaphorin–neuropilin-1 interactions in plasticity and regeneration of adult neurons. Cell Tissue Res 2001; 305: 275–284.

    Article  CAS  Google Scholar 

  43. Pasterkamp RJ, Verhaegen J . Emerging roles for semaphorins in neural regeneration. Brain Res Rev 2001; 35: 36–54.

    Article  CAS  Google Scholar 

  44. Perrone-Bizzozero NI, Sower AC, Bird ED, Benowitz LI, Ivins KJ, Neve RL . Levels of the growth-associated protein GAP-43 are selectively increased in association cortices in schizophrenia. Proc Natl Acad Sci USA 1996; 93: 14182–14187.

    Article  CAS  Google Scholar 

  45. Eastwood SL, Harrison PJ . Hippocampal and cortical growth-associated protein-43 messenger RNA in schizophrenia. Neuroscience 1998; 86: 437–448.

    Article  CAS  Google Scholar 

  46. Weickert CS, Webster MJ, Hyde TM, Herman MM, Bachus SE, Bali G et al. Reduced GAP-43 mRNA in dorsolateral prefrontal cortex of patients with schizophrenia. Cerebr Cortex 2001; 11: 136–147.

    Article  CAS  Google Scholar 

  47. Barbeau D, Liang JJ, Robitaille Y, Quirion R, Srivastava LK . Decreased expression of the embryonic form of the neural cell adhesion molecule in schizophrenic brains. Proc Natl Acad Sci USA 1995; 92: 2785–2789.

    Article  CAS  Google Scholar 

  48. Honer WG, Falkai P, Young C, Wang T, Xie J, Bonner J et al. Cingulate cortex synaptic terminal proteins and neural cell adhesion molecule in schizophrenia. Neurosci 1997; 78: 99–110.

    Article  CAS  Google Scholar 

  49. Vawter MP . Dysregulation of the neural cell adhesion molecule and neuropsychiatric disorders. Eur J Pharmacol 2000; 405: 385–395.

    Article  CAS  Google Scholar 

  50. Kozlovsky N, Belmaker RH, Agam G . Low GSK-3β immunoreactivity in postmortem frontal cortex of schizophrenic patients. Am J Psychiatry 1996; 157: 831–833.

    Article  Google Scholar 

  51. Cotter D, Kerwin R, Al-Sarraji S, Brion JP, Chadwick A, Lovestone S et al. Abnormalities of Wnt signalling in schizophrenia — evidence for neurodevelopmental abnormality. Neuroreport 1998; 9: 1379–1383.

    Article  CAS  Google Scholar 

  52. Nijhawan D, Honarpour N, Wang XD . Apoptosis in neural development and disease. Annu Rev Neurosci 2000; 23: 73–87.

    Article  CAS  Google Scholar 

  53. Mehler MF, Gokhan S . Developmental mechanisms in the pathogenesis of neurodegenerative diseases. Prog Neurobiol 2001; 63: 337–363.

    Article  CAS  Google Scholar 

  54. DeLisi LE . Is schizophrenia a lifetime disorder of brain plasticity, growth and aging? Schizophr Res 1997; 23: 119–129.

    Article  CAS  Google Scholar 

  55. Lieberman JA . Is schizophrenia a neurodegenerative disorder? A clinical and neurobiological perspective. Biol Psychiatry 1999; 46: 729–739.

    Article  CAS  Google Scholar 

  56. Arnold SE, Rioux L . Challenges, status, and opportunities for studying developmental neuropathology in adult schizophrenia. Schizophr Bull 2001; 27: 395–416.

    Article  CAS  Google Scholar 

  57. Mukaetova-Ladinska EB, Hurt J, Honer WG, Harrington CR, Wischik CM . Loss of synaptic but not cytoskeletal proteins in the cerebellum of chronic schizophrenics. Neurosci Lett 2002; 317: 161–165.

    Article  CAS  Google Scholar 

  58. Harrison PJ, Eastwood SL . Neuropathological studies of synaptic connectivity in the hippocampal formation in schizophrenia. Hippocampus 2001; 11: 508–519.

    Article  CAS  Google Scholar 

  59. Edgar PF, Douglas JE, Cooper GJS, Dean B, Kydd R, Faull RLM . Comparative proteome analysis of the hippocampus implicates chromosome 6q in schizophrenia. Mol Psychiatry 2000; 5: 85–90.

    Article  CAS  Google Scholar 

  60. Takahashi T, Forurnier A, Nakamura F, Wang LH, Murumaki Y, Kalb RG et al. Plexin–neuropilin-1 complexes form functional semaphorin-3A receptors. Cell 1999; 99: 59–69.

    Article  CAS  Google Scholar 

  61. Tamagnone L, Comoglio PM . Signalling by semaphorin receptors: cell guidance and beyond. Trends Cell Biol 2000; 10: 377–383.

    Article  CAS  Google Scholar 

  62. Gao PP, Yue Y, Cerretti DP, Dreyfus C, Zhou RP . Ephrin-dependent growth and pruning of hippocampal axons. Proc Natl Acad Sci USA 1999; 96: 4073–4077.

    Article  CAS  Google Scholar 

  63. Ranscht B . Cadherins: molecular codes for axon guidance and synapse formation. Int J Dev Neurosci 2000; 18: 643–651.

    Article  CAS  Google Scholar 

  64. Weimann JM, Zhang YA, Levin ME, Devine W, Brûlet P, McConnell SK . Cortical neurons require Otx1 for the refinement of exuberant axonal projections to subcortical targets. Neuron 1999; 24: 819–831.

    Article  CAS  Google Scholar 

  65. Harrison PJ, Heath PR, Eastwood SL, Burnet PWJ, McDonald B, Pearson RCA . The relative importance of premortem acidosis and post mortem interval for human brain gene expression studies: selective mRNA vulnerability and comparison with their encoded proteins. Neurosci Lett 1995; 200: 151–154.

    Article  CAS  Google Scholar 

  66. Harrison PJ, Kleinman JE . Methodological issues. In: Harrison PJ, Roberts GW (eds). The Neuropathology of Schizophrenia. Progress and Interpretation. Oxford University Press, Oxford, 2000, pp 339–350.

    Google Scholar 

  67. Fatemi SH, Earle JA, McMenomy T . Reduction in reelin immunoreactivity in hippocampus of subjects with schizophrenia, bipolar disorder and major depression. Mol Psychiatry 2000; 5: 654–663.

    Article  CAS  Google Scholar 

  68. Seil FJ, Drake-Baumann R . TrkB receptor ligands promote activity-dependent inhibitory synaptogenesis. J Neurosci 2000; 20: 5367–5373.

    Article  CAS  Google Scholar 

  69. Hashimoto K, Ichikawa R, Takechi H, Inuoe Y, Aiba A, Sakimura K et al. Roles of glutamate receptor δ2 subunit (GluRδ2) and metabotropic glutamate receptor subtype 1 (mGluR1) in climbing fiber synapse elimination during postnatal cerebellar development. J Neurosci 2001; 21: 9701–9712.

    Article  CAS  Google Scholar 

  70. Rico B, Xu B, Reichardt LF . TrkB receptor signalling is required for establishment of GABAergic synapses in the cerebellum. Nat Neurosci 2002; 5: 225–233.

    Article  CAS  Google Scholar 

  71. Harrison PJ . The neuropathology of primary mood disorder. Brain 2002; 125: 1428–1449.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by a Stanley Research Centre award to PJH, and the Wellcome Trust (UK). We are grateful to Robert Kerwin, David Cotter, Padraig Wright and the MRC Brain Bank, Institute of Psychiatry, London, for help with provision and characterization of adult case and control tissue. We also thank Cyndi Shannon Weickert and Mary Herman (Clinical Brain Disorders Branch, NIMH, Bethesda, MD) and Maree Webster (Stanley Neuropathology Consortium, Bethesda, MD) for the infant cerebellar sections.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P J Harrison.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eastwood, S., Law, A., Everall, I. et al. The axonal chemorepellant semaphorin 3A is increased in the cerebellum in schizophrenia and may contribute to its synaptic pathology. Mol Psychiatry 8, 148–155 (2003). https://doi.org/10.1038/sj.mp.4001233

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4001233

Keywords

This article is cited by

Search

Quick links