Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Research Article
  • Published:

Biased paternal transmission of SNAP-25 risk alleles in attention-deficit hyperactivity disorder

Abstract

Attention-deficit hyperactivity disorder (ADHD) is the most common childhood psychiatric disorder, affecting 5–10% of school-age children. Although the biological basis of this disorder is unknown, twin and family studies provide strong evidence that ADHD has a genetic basis involving multiple genes. A previous study found an association between ADHD and two polymorphisms in the 3′ untranslated region (UTR) of SNAP-25, a gene encoding a synaptic vesicle docking protein known to play a role in the hyperactivity observed in the Coloboma mouse strain. In this paper, we test biased transmission of the 3′ UTR SNAP-25 haplotype using a larger ADHD sample of 113 families with 207 affected children. Using the transmission disequilibrium test (TDT), we found a trend consistent with biased transmission of the TC haplotype of SNAP-25 in all transmissions and detected a significant distortion (P=0.027) when paternal transmissions were evaluated.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Cantwell DP . Attention deficit disorder: a review of the past 10 years. J Am Acad Child Adolesc Psychiatry 1996; 35: 978–987.

    Article  CAS  PubMed  Google Scholar 

  2. Taylor E, Chadwick O, Heptinstall E, Danckaerts M . Hyperactivity and conduct problems as risk factors for adolescent development. J Am Acad Child Adolesc Psychiatry 1996; 35: 1213–1226.

    Article  CAS  PubMed  Google Scholar 

  3. Faraone SV, Biederman J, Spencer T, Wilens T, Seidman LJ, Mick E et al. Attention-deficit/hyperactivity disorder in adults: an overview. Biol Psychiatry 2000; 48: 9–20.

    Article  CAS  PubMed  Google Scholar 

  4. Schubiner H, Tzelepis A, Milberger S, Lockhart N, Kruger M, Kelley BJ et al. Prevalence of attention-deficit/hyperactivity disorder and conduct disorder among substance abusers. J Clin Psychiatry 2000; 61: 244–251.

    Article  CAS  PubMed  Google Scholar 

  5. Eaves LJ, Silberg JL, Meyer JM, Maes HH, Simonoff E, Pickles A et al. Genetics and developmental psychopathology: 2. The main effects of genes and environment on behavioral problems in the Virginia Twin Study of Adolescent Behavioral Development. J Child Psychol Psychiatry 1997; 38: 965–980.

    Article  CAS  PubMed  Google Scholar 

  6. Faraone SVB . Neurobiology of attention-deficit hyperactivity disorder. Biol Psychiatry 1998; 44: 951–958.

    Article  CAS  PubMed  Google Scholar 

  7. Smalley SL . Genetic influences in childhood-onset psychiatric disorders: autism and attention-deficit/hyperactivity disorder. Am J Hum Genet 1997; 60: 1276–1282.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Smalley SL, McGough JJ, Del'Homme M, NewDelman J, Gordon E, Kim T et al. Familial clustering of symptoms and disruptive behaviors in multiplex families with attention-deficit/hyperactivity disorder. J Am Acad Child Adolesc Psychiatry 2000; 39: 1135–1143.

    Article  CAS  PubMed  Google Scholar 

  9. Cook Jr EH, Stein MA, Krasowski MD, Cox NJ, Olkon DM, Kieffer JE et al. Association of attention-deficit disorder and the dopamine transporter gene. Am J Hum Genet 1995; 56: 993–998.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Comings DE, Chen C, Wu S, Muhleman D . Association of the androgen receptor gene (AR) with ADHD and conduct disorder. Neuroreport 1999; 10: 1589–1592.

    Article  CAS  PubMed  Google Scholar 

  11. Swanson JM, Sunohara GA, Kennedy JL, Regino R, Fineberg E, Wigal T et al. Association of the dopamine receptor D4 (DRD4) gene with a refined phenotype of attention deficit hyperactivity disorder (ADHD): a family-based approach. Mol Psychiatry 1998; 3: 38–41.

    Article  CAS  PubMed  Google Scholar 

  12. Smalley SL, Bailey JN, Palmer CG, Cantwell DP, McGough JJ, Del'Homme MA et al. Evidence that the dopamine D4 receptor is a susceptibility gene in attention deficit hyperactivity disorder [see comments] [published erratum appears in Mol Psychiatry 1999 Jan;4(1): 100]. Mol Psychiatry 1998; 3: 427–430.

    Article  CAS  PubMed  Google Scholar 

  13. Eisenberg J, Mei-Tal G, Steinberg A, Tartakovsky E, Zohar A, Gritsenko I et al. Haplotype relative risk study of catechol-O-methyltransferase (COMT) and attention deficit hyperactivity disorder (ADHD): association of the high-enzyme activity Val allele with ADHD impulsive–hyperactive phenotype. Am J Med Genet 1999; 88: 497–502.

    Article  CAS  PubMed  Google Scholar 

  14. Eisenberg J, Zohar A, Mei-Tal G, Steinberg A, Tartakovsky E, Gritsenko I et al. A haplotype relative risk study of the dopamine D4 receptor (DRD4) exon III repeat polymorphism and attention deficit hyperactivity disorder (ADHD). Am J Med Genet 2000; 96: 258–261.

    Article  CAS  PubMed  Google Scholar 

  15. Kotler M, Manor I, Sever Y, Eisenberg J, Cohen H, Ebstein RP et al. Failure to replicate an excess of the long dopamine D4 exon III repeat polymorphism in ADHD in a family-based study. Am J Med Genet 2000; 96: 278–281.

    Article  CAS  PubMed  Google Scholar 

  16. Hawi Z, McCarron M, Kirley A, Daly G, Fitzgerald M, Gill M . No association of the dopamine DRD4 receptor (DRD4) gene polymorphism with attention deficit hyperactivity disorder (ADHD) in the Irish population. Am J Med Genet 2000; 96: 268–272.

    Article  CAS  PubMed  Google Scholar 

  17. Palmer CG, Bailey JN, Ramsey C, Cantwell D, Sinsheimer JS, Del'Homme M et al. No evidence of linkage or linkage disequilibrium between DAT1 and attention deficit hyperactivity disorder in a large sample. Psychiatr Genet 1999; 9: 157–160.

    Article  CAS  PubMed  Google Scholar 

  18. Manor I, Kotler M, Sever Y, Eisenberg J, Cohen H, Ebstein RP et al. Failure to replicate an association between the catechol-O- methyltransferase polymorphism and attention deficit hyperactivity disorder in a second, independently recruited Israeli cohort. Am J Med Genet 2000; 96: 858–860.

    Article  CAS  PubMed  Google Scholar 

  19. Hess EJ, Jinnah HA, Kozak CA, Wilson MC . Spontaneous loco-motor hyperactivity in a mouse mutant with a deletion including the Snap gene on Chromosome 2. J Neurosci 1992; 12: 2865–2874.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wilson MC . Coloboma mouse mutant as an animal model of hyperkinesis and attention deficit hyperactivity disorder. Neurosci Biobehav Rev 2000; 24: 51–57.

    Article  CAS  PubMed  Google Scholar 

  21. Steffensen SC, Henriksen SJ, Wilson MC . Transgenic rescue of SNAP-25 restores dopamine-modulated synaptic transmission in the coloboma mutant. Brain Res 1999; 847: 186–195.

    Article  CAS  PubMed  Google Scholar 

  22. Hess EJ, Rogan PK, Domoto M, Tinker DE, Ladda RL, Ramer JC . Absence of linkage of apparently single gene mediated ADHD with the human syntenic region of the mouse mutant Coloboma. Am J Med Genet 1995; 60: 573–579.

    Article  CAS  PubMed  Google Scholar 

  23. Barr CL, Feng Y, Wigg K, Bloom S, Roberts W, Malone M et al. Identification of DNA variants in the SNAP-25 gene and linkage study of these polymorphisms and attention-deficit hyperactivity disorder. Mol Psychiatry 2000; 5: 405–409.

    Article  CAS  PubMed  Google Scholar 

  24. Kaufman JBB, Brent D, Rao U . Schedule for affective disorders and schizophrenia for school aged children (6–18 years)—present and lifetime version (K-SADS-PL): initial reliability and validity data. J Am Acad Child Adolesc Psychiatry 1997; 36: 980–988.

    Article  CAS  PubMed  Google Scholar 

  25. Swanson J . SNAP-IV Scale. Irvine: University of California Child Development Center, 1995.

    Google Scholar 

  26. Achenbach T . Empirically Based Taxonomy: How to Use Syndromes and Profile Types Derived From the CBCL From 4 to 18 TRF and WSR. Burlington: Department of Psychiatry, University of Vermont; 1993.

    Google Scholar 

  27. Chen X, Levine L, Kwok PY . Fluorescence polarization in homogeneous nucleic acid analysis. Genome Res 1999; 9: 492–498.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Hinds DA, Risch N . The ASPEX package: affected sib-pair exclusion mapping. ftp://lahmed.stanford/edu/pub/aspex.1996.

  29. Spielman RS, McGinnis RE, Ewens WJ . Transmission test for linkage disequilibrium: the insulin gene region and insulin-dependent diabetes mellitus (IDDM). Am J Hum Genet 1993; 52: 506–516.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Lange K . Mathematical and Statistical Methods for Genetic Analysis, 1st edn. New York: Springer, 1997.

    Book  Google Scholar 

  31. Greally JM, State MW . Genetics of childhood disorders: XIII, Genomic imprinting: the indelible mark of the gamete. J Am Acad Child Adolesc Psychiatry 2000; 39: 532–535.

    Article  CAS  PubMed  Google Scholar 

  32. A generalization of the transmission/disequilibrium test for uncertain-haplotype transmission. Am J Hum Genet 1999; 65: 1170–1177.

  33. Risch N, Merikangas K . The future of genetic studies of complex diseases. Science 1996; 273: 1516–1517.

    Article  CAS  PubMed  Google Scholar 

  34. Fisher SE, Francks C, McCracken JT, McGough JJ, Marlow AJ, MacPhie L et al. A genome-wide scan for loci involved in attention-deficit/hyperactivity disorder (ADHD). Am J Hum Genet, 2002; 70: 1183–1196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank LJL Biosystems for a generous loan of their LJL Analyst HT instrument for fluorescence polarization measurement. We thank Lori Crawford for genomic DNA sample preparations, assistance in developing the genotyping assay, and critical assessment of this manuscript. We thank all the families that participated in the research. We thank Tae Kim, Laura Combs, Melissa Del Homme and Leah Pressman for their work in data collection. VK was supported by the USPHS National Research Service Award GM07104. The work was supported by NIH Grant RO1 MH58277 to SLS and by UC-BioSTAR Grant B990817 to SFN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S F Nelson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kustanovich, V., Merriman, B., McGough, J. et al. Biased paternal transmission of SNAP-25 risk alleles in attention-deficit hyperactivity disorder. Mol Psychiatry 8, 309–315 (2003). https://doi.org/10.1038/sj.mp.4001247

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4001247

Keywords

This article is cited by

Search

Quick links