Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Research Article
  • Published:

Depressive-like behavior and stress reactivity are independent traits in a Wistar Kyoto × Fisher 344 cross

Abstract

Depression is a heritable disorder that is often precipitated by stress. Abnormalities of the stress-reactive hypothalamic–pituitary–adrenal (HPA) axis are also common in depressed patients. In animal models, the forced swim test (FST) is the most frequently used test of depressive-like behavior. We have used a proposed animal model of depression, the Wistar Kyoto (WKY) rat, to investigate the relationship as well as the mode of inheritance of FST behaviors and HPA measures. Through reciprocal breeding of WKY and F344 parent strains and brother–sister breeding of the F1 generation, we obtained 486 F2 animals. Parent, F1 and F2 animals were tested in the FST. Blood samples were collected for determination of basal and stress (10-min restraint) plasma corticosterone (CORT) levels, and adrenal weights were measured. We found that all measures were heritable to some extent and that this heritability was highly sex dependent. Both correlation and factor analyses of the F2 generation data demonstrate that FST behavior and HPA axis measures are not directly related. Thus, the underlying genetic components of depressive-like behavior and HPA axis abnormalities are likely to be disparate in the segregating F2 generation of a WKY × F344 cross.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Weissman MM, Gershon ES, Kidd KK, Prusoff BA, Leckman JF, Dibble E et al. Psychiatric disorders in the relatives of probands with affective disorders. The Yale University – National Institute of Mental Health Collaborative Study. Arch Gen Psychiatry 1984; 41: 13–21.

    Article  CAS  PubMed  Google Scholar 

  2. Bertelsen A, Harvald B, Hauge M . A Danish twin study of manic-depressive disorders. Br J Psychiatry 1977; 130: 330–351.

    Article  CAS  PubMed  Google Scholar 

  3. McGuffin P, Katz R, Watkins S, Rutherford J . A hospital-based twin register of the heritability of DSM-IV unipolar depression. Arch Gen Psychiatry 1996; 53: 129–136.

    Article  CAS  PubMed  Google Scholar 

  4. Weissman MM, Bland RC, Canino GJ, Faravelli C, Greenwald S, Hwu HG et al. Cross-national epidemiology of major depression and bipolar disorder. JAMA 1996; 276: 293–299.

    Article  CAS  PubMed  Google Scholar 

  5. Kendler KS, Karkowski LM, Prescott CA . Causal relationship between stressful life events and the onset of major depression. Am J Psychiatry 1999; 156: 837–841.

    Article  CAS  PubMed  Google Scholar 

  6. Post RM . Transduction of psychosocial stress into the neurobiology of recurrent affective disorder. Am J Psychiatry 1992; 149: 999–1010.

    Article  CAS  PubMed  Google Scholar 

  7. Kendler KS, Kessler RC, Walters EE, MacLean C, Neale MC, Heath AC et al. Stressful life events, genetic liability, and onset of an episode of major depression in women. Am J Psychiatry 1995; 152: 833–842.

    Article  CAS  PubMed  Google Scholar 

  8. Heuser I . Anna-Monika-Prize paper. The hypothalamic–pituitary–adrenal system in depression. Pharmacopsychiatry 1998; 31: 10–13.

    Article  CAS  PubMed  Google Scholar 

  9. Musselman DL, Nemeroff CB . Depression and endocrine disorders: focus on the thyroid and adrenal system. Br J Psychiatry Suppl 1996; 30: 123–128.

    Article  Google Scholar 

  10. Pariante CM, Nemeroff CB, Miller AH . Glucocorticoid receptors in depression. Israel J Med Sci 1995; 31: 705–712.

    CAS  PubMed  Google Scholar 

  11. Gold PW, Wong ML, Chrousos GP, Licinio J . Stress system abnormalities in melancholic and atypical depression: molecular, pathophysiological, and therapeutic implications. Mol Psychiatry 1996; 1: 257–264.

    CAS  PubMed  Google Scholar 

  12. Young EA, Aggen SH, Prescott CA, Kendler KS . Similarity in saliva cortisol measures in monozygotic twins and the influence of past major depression. Biol Psychiatry 2000; 48: 70–74.

    Article  CAS  PubMed  Google Scholar 

  13. Young EA, Lopez JF, Murphy-Weinberg V, Watson SJ, Akil H . Hormonal evidence for altered responsiveness to social stress in major depression. Neuropsychopharmacology 2000; 23: 411–418.

    Article  CAS  PubMed  Google Scholar 

  14. Amsterdam JD, Marinelli DL, Arger P, Winokur A . Assessment of adrenal gland volume by computed tomography in depressed patients and healthy volunteers: a pilot study. Psychiatry Res 1987; 21: 189–197.

    Article  CAS  PubMed  Google Scholar 

  15. Skelton FR, Bernardis LL . Effect of age, sex, hypophysectomy and gonadectomy on plasma corticosterone levels and adrenal weights following the administration of ACTH and stress. Experientia 1966; 22: 551–552.

    Article  CAS  PubMed  Google Scholar 

  16. Tizabi Y, Aguilera G . Desensitization of the hypothalamic–pituitary–adrenal axis following prolonged administration of corticotropin-releasing hormone or vasopressin. Neuroendocrinology 1992; 56: 611–618.

    Article  CAS  PubMed  Google Scholar 

  17. Kendler KS, Karkowski-Shuman L . Stressful life events and genetic liability to major depression: genetic control of exposure to the environment? Psychol Med 1997; 27: 539–547.

    Article  CAS  PubMed  Google Scholar 

  18. Armario A, Gavalda A, Marti J . Comparison of the behavioural and endocrine response to forced swimming stress in five inbred strains of rats. Psychoneuroendocrinology 1995; 20: 879–890.

    Article  CAS  PubMed  Google Scholar 

  19. Berton O, Ramos A, Chaouloff F, Mormede P . Behavioral reactivity to social and nonsocial stimulations: a multivariate analysis of six inbred rat strains. Behavior Genet 1997; 27: 155–166.

    Article  CAS  Google Scholar 

  20. Castanon N, Hendley ED, Fan XM, Mormede P . Psychoneuroendocrine profile associated with hypertension or hyperactivity in spontaneously hypertensive rats. Am J Physiol 1993; 265: R1304–R310.

  21. Courvoisier H, Moisan MP, Sarrieau A, Hendley ED, Mormede P . Behavioral and neuroendocrine reactivity to stress in the WKHA/WKY inbred rat strains: a multifactorial and genetic analysis. Brain Res 1996; 743: 77–85.

    Article  CAS  PubMed  Google Scholar 

  22. Gilad GM, Shiller I . Differences in open-field behavior and in learning tasks between two rat strains differing in their reactivity to stressors. Behav Brain Res 1989; 32: 89–93.

    Article  CAS  PubMed  Google Scholar 

  23. Lahmame A, Armario A . Differential responsiveness of inbred strains of rats to antidepressants in the forced swimming test: are Wistar Kyoto rats an animal model of subsensitivity to antidepressants? Psychopharmacology 1996; 123: 191–198.

    Article  CAS  PubMed  Google Scholar 

  24. Lahmame A, del Arco C, Pazos A, Yritia M, Armario A . Are Wistar-Kyoto rats a genetic animal model of depression resistant to antidepressants? Eur J Pharmacol 1997; 337: 115–123.

    Article  CAS  PubMed  Google Scholar 

  25. Lopez-Rubalcava C, Lucki I . Strain differences in the behavioral effects of antidepressant drugs in the rat forced swimming test. Neuropsychopharmacology 2000; 22: 191–199.

    Article  CAS  PubMed  Google Scholar 

  26. Marti J, Armario A . Forced swimming behavior is not related to the corticosterone levels achieved in the test: a study with four inbred rat strains. Physiol Behav 1996; 59: 369–373.

    Article  CAS  PubMed  Google Scholar 

  27. Pare WP . Open field, learned helplessness, conditioned defensive burying, and forced-swim tests in WKY rats. Physiol Behav 1994; 55: 433–439.

    Article  CAS  PubMed  Google Scholar 

  28. Pare WP . Passive-avoidance behavior in Wistar Kyoto (WKY), Wistar, and Fisher-344 rats. Physiol Behav 1993; 54: 845–852.

    Article  CAS  PubMed  Google Scholar 

  29. Pare WP . The performance of Wistar Kyoto WKY rats on three tests of emotional behavior. Physiol Behav 1992; 51: 1051–1056.

    Article  CAS  PubMed  Google Scholar 

  30. Pare WP . Stress ulcer and open-field behavior of spontaneously hypertensive, normotensive, and Wistar rats. Pavlovian J Biol Sci 1989; 24: 54–57.

    CAS  Google Scholar 

  31. Pare WP, Redei E . Depressive behavior and stress ulcer in Wistar Kyoto rats. J Physiol Paris 1993; 87: 229–238.

    Article  CAS  PubMed  Google Scholar 

  32. Redei E, Pare WP, Aird F, Kluczynski J . Strain differences in hypothalamic–pituitary–adrenal activity and stress ulcer. Am J Physiol 1994; 266: R353–R360.

    CAS  PubMed  Google Scholar 

  33. Rittenhouse P, Lopez-Rubalcava C, Stanwood G, Lucki I . Amplified behavioral and endocrine responses to forced swim stress in the Wistar-Kyoto rat. Psychoneuroendocrinology 2002; 27: 303–318.

    Article  PubMed  Google Scholar 

  34. Tizabi Y, Aguilera G, Gilad GM . Age-related reduction in pituitary corticotropin-releasing hormone receptors in two rat strains. Neurobiol Aging 1992; 13: 227–230.

    Article  CAS  PubMed  Google Scholar 

  35. Porsolt RD, Le Pichon M, Jalfre M . Depression: a new animal model sensitive to antidepressant treatments. Nature 1977; 266: 730–732.

    Article  CAS  PubMed  Google Scholar 

  36. Porsolt RD, Bertin A, Jalfre M . Behavioral despair in mice: a primary screening test for antidepressants. Arch Int Pharmacodyn Ther 1977; 229: 327–336.

    CAS  PubMed  Google Scholar 

  37. Porsolt RD, Anton G, Blavet N, Jalfre M . Behavioural despair in rats: a new model sensitive to antidepressant treatment. Eur J Pharmacol 1978; 47: 379–391.

    Article  CAS  PubMed  Google Scholar 

  38. Marti J, Armario A . Effects of diazepam and desipramine in the forced swimming test: influence of previous experience with situation. Eur J Pharmacol 1993; 236: 295–299.

    Article  CAS  PubMed  Google Scholar 

  39. Armario A, Gavalda A, Marti O . Forced swimming test in rats: effect of desipramine administration and the period of exposure to the test on struggling behavior, swimming, immobility and defecation rate. Euro J Pharmacol 1988; 158: 207–212.

    Article  CAS  Google Scholar 

  40. Lucki I . The forced swimming test as a model for core and component behavioral effects of antidepressant drugs. Behav Pharmacol 1997; 8: 523–532.

    Article  CAS  PubMed  Google Scholar 

  41. Pare W . Learning behavior, escape behavior, and depression in an ulcer susceptible rat strain. Integr Physiol Behav Sci 1992; 27: 130–141.

    Article  CAS  PubMed  Google Scholar 

  42. Gilad GM, Li R, Wyatt RJ, Tizabi Y . Effects of genotype on age-related alterations in the concentrations of stress hormones in plasma and hypothalamic monoamines in rats. J Reprod Fertil Suppl 1993; 46: 119–130.

    CAS  PubMed  Google Scholar 

  43. Hashimoto K, Makino S, Hirasawa R, Takao T, Sugawara M, Murakami K et al. Abnormalities in the hypothalamo–pituitary–adrenal axis in spontaneously hypertensive rats during development of hypertension. Endocrinology 1989; 125: 1161–1167.

    Article  CAS  PubMed  Google Scholar 

  44. Gomez F, Lahmame A, de Kloet ER, Armario A . Hypothalamic–pituitary–adrenal response to chronic stress in five inbred rat strains: differential responses are mainly located at the adrenocortical level. Neuroendocrinology 1996; 63: 327–337.

    Article  CAS  PubMed  Google Scholar 

  45. Durand M, Berton O, Aguerre S, Edno L, Combourieu I, Mormede P et al. Effects of repeated fluoxetine on anxiety-related behaviours, central serotonergic systems, and the corticotropic axis in SHR and WKY rats. Neuropharmacology 1999; 38: 893–907.

    Article  CAS  PubMed  Google Scholar 

  46. Gomez F, De Kloet ER, Armario A . Glucocorticoid negative feedback on the HPA axis in five inbred rat strains. Am J Physiol 1998; 274: R420–R427.

    CAS  PubMed  Google Scholar 

  47. Solberg LC, Olson SL, Turek FW, Redei E . Altered hormone levels and circadian rhythm of activity in the WKY rat, a putative animal model of depression. Am J Physiol Regul Integr Comp Physiol 2001; 281: 786–794.

    Article  Google Scholar 

  48. Ramos A, Mellerin Y, Mormede P, Chaouloff F . A genetic and multifactorial analysis of anxiety-related behaviours in Lewis and SHR intercrosses. Behav Brain Res 1998; 96: 195–205.

    Article  CAS  PubMed  Google Scholar 

  49. Alonso SJ, Castellano MA, Afonso D, Rodriguez M . Sex differences in behavioral despair: relationships between behavioral despair and open field activity. Physiol Behav 1991; 49: 69–72.

    Article  CAS  PubMed  Google Scholar 

  50. Atkinson HC, Waddell BJ . Circadian variation in basal plasma corticosterone and adrenocorticotropin in the rat: sexual dimorphism and changes across the estrous cycle. Endocrinology 1997; 138: 3842–3848.

    Article  CAS  PubMed  Google Scholar 

  51. Contreras CM, Martinez-Mota L, Saavedra M . Desipramine restricts estral cycle oscillations in swimming. Prog Neuro-Psychopharmacol Biol Psychiatry 1998; 22: 1121–1128.

    Article  CAS  Google Scholar 

  52. Pare WP, Redei E . Sex differences and stress response of WKY rats. Physiol Behav 1993; 54: 1179–1185.

    Article  CAS  PubMed  Google Scholar 

  53. Detke MJ, Rickels M, Lucki I . Active behaviors in the rat forced swimming test differentially produced by serotonergic and noradrenergic antidepressants. Psychopharmacology 1995; 121: 66–72.

    Article  CAS  PubMed  Google Scholar 

  54. Swann JM, Turek FW . Transfer from long to short days reduces the frequency of pulsatile luteinizing hormone release in intact but not in castrated male golden hamsters. Neuroendocrinology 1988; 47: 343–349.

    Article  CAS  PubMed  Google Scholar 

  55. De Souza EB, Van Loon GR . Rate-sensitive glucocorticoid feedback inhibition of adrenocorticotropin and beta-endorphin/beta-lipotropin secretion in rats. Endocrinology 1989; 125: 2927–2934.

    Article  CAS  PubMed  Google Scholar 

  56. Jones MT, Brush FR, Neame RLB . Characteristics of fast feedback control of corticotrophin release of corticosteroids. J Endocrinol 1972; 55: 489.

    Article  CAS  PubMed  Google Scholar 

  57. Falconer D . Introduction to Quantitative Genetics. Longman Scientific and Technical: New York, 1960.

    Google Scholar 

  58. Hegmann JP, Possidente B . Estimating genetic correlations from inbred strains. Behav Genet 1981; 11: 103–114.

    Article  CAS  PubMed  Google Scholar 

  59. Possidente B, Mustafa M, Collins L . Quantitative genetic variation for oviposition preference with respect to phenylthiocarbamide in Drosophila melanogaster. Behav Genet 1999; 29: 193–198.

    Article  CAS  PubMed  Google Scholar 

  60. Mather SK, Jinks J . Components of means: interaction and heterosis. In: Biometrical Genetics: The Study of Continuous Variation. 3rd edn. Chapman & Hall: London, 1982.

    Chapter  Google Scholar 

  61. Tilghman SM . The sins of the fathers and mothers: genomic imprinting in mammalian development. Cell 1999; 96: 185–193.

    Article  CAS  PubMed  Google Scholar 

  62. Bale TL, Picetti R, Contarino A, Koob GF, Vale WW, Lee KF . Mice deficient for both corticotropin-releasing factor receptor 1 (CRFR1) and CRFR2 have an impaired stress response and display sexually dichotomous anxiety-like behavior. J Neurosci 2002; 22: 193–199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Sherrill JT, Anderson B, Frank E, Reynolds CF, Tu XM, Patterson D et al. Is life stress more likely to provoke depressive episodes in women than in men? Depress Anxiety 1997; 6: 95–105.

    Article  CAS  PubMed  Google Scholar 

  64. Kendler KS, Gardner CO, Neale MC, Prescott CA . Genetic risk factors for major depression in men and women: similar or different heritabilities and same or partly distinct genes? Psychol Med 2001; 31: 605–616.

    CAS  PubMed  Google Scholar 

  65. Fernandez-Teruel A, Escorihuela R, Gray J, Aguilar R, Gil L, Gimenez-Llort L et al. A quantitative trait locus influencing anxiety in the laboratory rat. Genome Res 2002; 12: 618–626.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Baez M, Volosin M . Corticosterone influences forced swim-induced immobility. Pharmacol Biochem Behav 1994; 49: 729–736.

    Article  CAS  PubMed  Google Scholar 

  67. Jefferys D, Copolov D, Irby D, Funder J . Behavioral effect of adrenalectomy: reversal by glucocorticoids or [D-Ala2, Met5]enkephalinamide. Eur J Pharmacol 1983; 92: 99–103.

    Article  CAS  PubMed  Google Scholar 

  68. Keck ME, Engelmann M, Muller MB, Henniger MS, Hermann B, Rupprecht R et al. Repetitive transcranial magnetic stimulation induces active coping strategies and attenuates the neuroendocrine stress response in rats. J Psychiatr Res 2000; 34: 265–276.

    Article  CAS  PubMed  Google Scholar 

  69. Korte SM, De Kloet ER, Buwalda B, Bouman SD, Bohus B . Antisense to the glucocorticoid receptor in hippocampal dentate gyrus reduces immobility in forced swim test. Eur J Pharmacol 1996; 301: 19–25.

    Article  CAS  PubMed  Google Scholar 

  70. Tronche F, Kellendonk C, Kretz O, Gass P, Anlag K, Orban PC et al. Disruption of the glucocorticoid receptor gene in the nervous system results in reduced anxiety. Nat Genet 1999; 23: 99–103.

    Article  CAS  PubMed  Google Scholar 

  71. Liebsch G, Landgraf R, Engelmann M, Lorscher P, Holsboer F . Differential behavioural effects of chronic infusion of CRH 1 and CRH 2 receptor antisense oligonucleotides into the rat brain. J Psychiatr Res 1999; 33: 153–163.

    Article  CAS  PubMed  Google Scholar 

  72. Castanon N, Perez-Diaz F, Mormede P . Genetic analysis of the relationships between behavioral and neuroendocrine traits in roman high and low avoidance rat lines. Behav Genet 1995; 25: 371–384.

    Article  CAS  PubMed  Google Scholar 

  73. Lahmame A, Grigoriadis DD, De Souza EB, Armario A . Brain corticotropin-releasing factor immunoreactivity and receptors in five inbred rat strains: relationship to forced swimming behaviour. Brain Res 1997; 750: 285–292.

    Article  CAS  PubMed  Google Scholar 

  74. Linkowski P, Mendlewicz J, Kerkhofs M, Leclercq R, Golstein J, Brasseur M et al. 24-hour profiles of adrenocorticotropin, cortisol and growth hormone in major depressive illness: effect antidepressant treatment. J Clin Endocrinol Metab 1987; 65: 141–152.

    Article  CAS  PubMed  Google Scholar 

  75. Aguilar R, Gil L, Flint J, Gray JA, Dawson GR, Driscoll P et al. Learned fear, emotional reactivity and fear of heights: a factor analytic map from a large F(2) intercross of Roman rat strains. Brain Res Bull 2002; 57: 17–26.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Susan Losee-Olson and Claire Will for help with the 24-h serial sampling. This work was supported by NIH MH60789 (EE Redei). JS Takahashi is an investigator in the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L C Solberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Solberg, L., Ahmadiyeh, N., Baum, A. et al. Depressive-like behavior and stress reactivity are independent traits in a Wistar Kyoto × Fisher 344 cross. Mol Psychiatry 8, 423–433 (2003). https://doi.org/10.1038/sj.mp.4001255

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4001255

Keywords

This article is cited by

Search

Quick links