Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Research Article
  • Published:

Analysis of reelin as a candidate gene for autism

Abstract

Genetic studies indicate that chromosome 7q is likely to contain an autism susceptibility locus (AUTS1). We have followed a positional candidate gene approach to identify relevant gene(s) and report here the analysis of reelin (RELN), a gene located under our peak of linkage. Screening RELN for DNA changes identified novel missense variants absent in a large control group; however, the low frequency of these mutations does not explain the relatively strong linkage results on 7q. Furthermore, analysis of a previously reported triplet repeat polymorphism and intragenic single nucleotide polymorphisms, using the transmission disequilibrium test, provided no evidence for association with autism in IMGSAC and German singleton families. The analysis of RELN suggests that it probably does not play a major role in autism aetiology, although further analysis of several missense mutations is warranted in additional affected individuals.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Chakrabarti S, Fombonne E . Pervasive developmental disorders in preschool children. JAMA 2001; 285: 3093–3099.

    Article  CAS  PubMed  Google Scholar 

  2. Fombonne E . The epidemiology of autism: a review. Psychol Med 1999; 29: 769–786.

    Article  CAS  PubMed  Google Scholar 

  3. Folstein S, Rutter M . Infantile autism: a genetic study of 21 twin pairs. J Child Psychol Psychiatry 1977; 18: 297–321.

    Article  CAS  PubMed  Google Scholar 

  4. Bolton P, Macdonald H, Pickles A, Rios P, Goode S, Crowson M et al. A case–control family history study of autism. J Child Psychol Psychiatry 1994; 35: 877–900.

    Article  CAS  PubMed  Google Scholar 

  5. Bailey A, Le Couteur A, Gottesman I, Bolton P, Simonoff E, Yuzda E et al. Autism as a strongly genetic disorder: evidence from a British twin study. Psychol Med 1995; 25: 63–77.

    Article  CAS  PubMed  Google Scholar 

  6. Pickles A, Bolton P, Macdonald H, Bailey A, Le Couteur A, Sim CH et al. Latent-class analysis of recurrence risks for complex phenotypes with selection and measurement error: a twin and family history study of autism. Am J Hum Genet 1995; 57: 717–726.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Lamb JA, Parr JR, Bailey AJ, Monaco AP . Autism: in search of susceptibility genes. Neuromol Med 2002; 2: 11–28.

    Article  CAS  Google Scholar 

  8. IMGSAC. A full genome screen for autism with evidence for linkage to a region on chromosome 7q. Hum Mol Genet 1998; 7: 571–578.

  9. IMGSAC. Further characterization of the autism susceptibility locus AUTS1 on chromosome 7q. Hum Mol Genet 2001; 10: 973–982.

  10. Rice DS, Curran T . Role of the reelin signaling pathway in central nervous system development. Annu Rev Neurosci 2001; 24: 1005–1039.

    Article  CAS  PubMed  Google Scholar 

  11. D'Arcangelo G, Miao GG, Chen SC, Soares HD, Morgan JI, Curran T . A protein related to extracellular matrix proteins deleted in the mouse mutant reeler. Nature 1995; 374: 719–723.

    Article  CAS  PubMed  Google Scholar 

  12. Hadj-Sahraoui N, Frederic F, Delhaye-Bouchaud N, Mariani J . Gender effect on Purkinje cell loss in the cerebellum of the heterozygous reeler mouse. J Neurogenet 1996; 11: 45–58.

    Article  CAS  PubMed  Google Scholar 

  13. Hong SE, Shugart YY, Huang DT, Shahwan SA, Grant PE, Hourihane JO et al. Autosomal recessive lissencephaly with cerebellar hypoplasia is associated with human RELN mutations. Nat Genet 2000; 26: 93–96.

    Article  CAS  PubMed  Google Scholar 

  14. Kemper TL, Bauman ML . The contribution of neuropathologic studies to the understanding of autism. Neurol Clin 1993; 11: 175–187.

    Article  CAS  PubMed  Google Scholar 

  15. Bailey A, Luthert P, Dean A, Harding B, Janota I, Montgomery M et al. A clinicopathological study of autism. Brain 1998; 121 (Part 5): 889–905.

    Article  PubMed  Google Scholar 

  16. Persico AM, D'Agruma L, Maiorano N, Totaro A, Militerni R, Bravaccio C et al. Reelin gene alleles and haplotypes as a factor predisposing to autistic disorder. Mol Psychiatry 2001; 6: 150–159.

    Article  CAS  PubMed  Google Scholar 

  17. Fatemi SH . The role of Reelin in pathology of autism. Molec Psychiatry 2002; 7: 919–920.

    Article  CAS  Google Scholar 

  18. Quattrocchi CC, Wannenes F, Persico AM, Ciafre SA, D'Arcangelo G, Farace MG et al. Reelin is a serine protease of the extracellular matrix. J Biol Chem 2001; 277: 303–309.

    Article  PubMed  Google Scholar 

  19. Spielman RS, McGinnis RE, Ewens WJ . Transmission test for linkage disequilibrium: the insulin gene region and insulin-dependent diabetes mellitus (IDDM). Am J Hum Genet 1993; 52: 506–516.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Lewontin RC . On measures of gametic disequilibrium. Genetics 1988; 120: 849–852.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Abecasis GR, Cookson WO . GOLD—graphical overview of linkage disequilibrium. Bioinformatics 2000; 16: 182–183.

    Article  CAS  PubMed  Google Scholar 

  22. Lord C, Rutter M, Le Couteur A . Autism Diagnostic Interview—Revised: a revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders. J Autism Develop Disord 1994; 24: 659–685.

    Article  CAS  Google Scholar 

  23. Pritchard JK . Are rare variants responsible for susceptibility to complex diseases? Am J Hum Genet 2001; 69: 124–137.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Tueting P, Costa E, Dwivedi Y, Guidotti A, Impagnatiello F, Manev R et al. The phenotypic characteristics of heterozygous reeler mouse. Neuroreport 1999; 10: 1329–1334.

    Article  CAS  PubMed  Google Scholar 

  25. Fatemi SH, Stary JM, Halt AR, Realmuto GR . Dysregulation of Reelin and Bcl-2 proteins in autistic cerebellum. J Autism Dev Disord 2001; 31: 529–535.

    Article  CAS  PubMed  Google Scholar 

  26. Sparrow S, Balla D, Cicchetti D . Vineland Adaptive Behaviour Scales. Pines C: MN, 1984.

    Google Scholar 

  27. Lord C, Risi S, Lambrecht L, Cook Jr EH, Leventhal BL, DiLavore PC et al. The autism diagnostic observation schedule-generic: a standard measure of social and communication deficits associated with the spectrum of autism. J Autism Dev Disord 2000; 30: 205–223.

    Article  CAS  PubMed  Google Scholar 

  28. Klauck SM, Munstermann E, Bieber-Martig B, Ruhl D, Lisch S, Schmotzer G et al. Molecular genetic analysis of the FMR-1 gene in a large collection of autistic patients. Hum Genet 1997; 100: 224–229.

    Article  CAS  PubMed  Google Scholar 

  29. Bonora E, Bacchelli E, Levy ER, Blasi F, Marlow A, Monaco AP et al. Mutation screening and imprinting analysis of four candidate genes for autism in the 7q32 region. Molec Psychiatry 2002; 7: 289–301.

    Article  CAS  Google Scholar 

  30. Morris AP, Curnow RN, Whittaker JC . Randomization tests of disease-marker associations. Ann Hum Genet 1997; 61: 49–60.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank all the families who have participated in the study and the professionals who continue to make this study possible. We thank John Broxholme for help in bioinformatic analysis, Pat Scudder and Tatjana Kraus for technical support, Elena Maestrini, Gabrielle Barnby, Elena Bacchelli, Yvonne Jones and Robert Esnouf for helpful discussions and critical comments on the manuscript. The DNA samples of German control individuals were collected by Laura Diedrichs. This study is funded in part by support from the UK Medical Research Council, The Wellcome Trust, BIOMED 2 (CT-97-2759), EC Fifth Framework (QLG2-CT-1999-0094), Telethon—Italy (E.1007), the Janus Korczak Foundation, Deutsche Forschungsgemeinschaft, Foundation France Télécom, Conseil Régional Midi-Pyrénées, Danish Medical Research Council, Sofiefonden, the Beatrice Surovell Haskells Fund for Child Mental Health Research of Copenhagen, the Danish Natural Science Research Council (9802210), the National Institute of Child Health and Development (5-P01-HD-35482-02) and the National Institutes of Health (MO1 RR06022 GCRC NIH, NIH K05 MH01196, K02 MH01389). EB is funded by a University of Oxford Graduate Prize Studentship and APM is a Wellcome Trust Principal Research Fellow.

Electronic-Database Information

International Molecular Genetic Study of Autism Consortium (IMGSAC), http://www.well.ox.ac.uk/~maestrin/iat.html

Online Mendelian Inheritance in Man (OMIM), http://www.ncbi.nlm.nih.gov/Omim/

Primer 3 Program, http://www.genome.wi.mit.edu/cgi-bin/primer/primer3_www.cgi

BLAST search, http://www.ncbi.nlm.nih.gov/BLAST

PromoterInspector Program, http://gsf.de/biodv

Author information

Authors and Affiliations

Authors

Consortia

Corresponding authors

Correspondence to A J Bailey or A P Monaco.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bonora, E., Beyer, K., Lamb, J. et al. Analysis of reelin as a candidate gene for autism. Mol Psychiatry 8, 885–892 (2003). https://doi.org/10.1038/sj.mp.4001310

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4001310

Keywords

This article is cited by

Search

Quick links