Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Research Article
  • Published:

Investigation of serotonin-related genes in antidepressant response

Abstract

In this study, we sought out to test the hypothesis that genetic factors may influence antidepressant response to fluoxetine. The investigation focused on seven candidate genes in the serotonergic pathway involved in the synthesis, transport, recognition, and degradation of serotonin. Our clinical sample consisted of 96 subjects with unipolar major depression treated with fluoxetine with response variables assessed after a 12-week trial. Patient data were also collected to investigate the pattern of drug response. Using a high-throughput single-nucleotide polymorphism (SNP) genotyping platform and capillary electrophoresis, we genotyped patients at 110 SNPs and four repeat polymorphisms located in seven candidate genes (HTR1A, HTR2A, HTR2C, MAOA, SLC6A4, TPH1, and TPH2). Statistical tests performed included single-locus and haplotype association tests, and linkage disequilibrium (LD) estimation. Little evidence of population stratification was observed in the sample with 20 random SNPs using a genomic control procedure. Our most intriguing result involved three SNPs in the TPH1 gene and one SNP in the SLC6A4 gene, which show significant single-locus association when response to fluoxetine is compared to nonresponse (P=0.02–0.04). All odds ratios indicated an increased risk of not responding to fluoxetine. In the specific response vs nonspecific and nonresponse comparison, three SNPs in the TPH2 gene (P=0.02–0.04) were positively associated and one SNP in the HTR2A gene (P=0.02) was negatively associated. When comparing specific response to nonspecific response, we found significant negative associations in three SNPs in the HTR2A gene (P=0.001–0.03) and two SNPs in the MAOA gene (P=0.03–0.05). We observed variable, although strong LD, in each gene and unexpectedly low numbers of estimated haplotypes, formed from tagged SNPs. Significant haplotype associations were found in all but the HTR1A and HTR2C genes. Although these data should be interpreted cautiously due to the small sample size, these results implicate TPH1 and SLC6A4 in general response, and HTR2A, TPH2, and MAOA in the specificity of response to fluoxetine. Intriguingly, we observe that a number of the less frequent alleles of many of the SNP markers were associated with the nonresponse and nonspecific phenotypes.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Kessler RC, McGonagle KA, Zhao S, Nelson CB, Hughes M, Eshleman S et al. Lifetime and 12-month prevalence of DSM-III-R psychiatric disorders in the United States. Results from the National Comorbidity Survey. Arch Gen Psychiatry 1994; 51: 8–19.

    CAS  PubMed  Google Scholar 

  2. Kessler RC, Berglund P, Demler O, Jin R, Koretz D, Merikangas KR et al. The epidemiology of major depressive disorder: results from the National Comorbidity Survey Replication (NCS-R). JAMA 2003; 289: 3095–3105.

    Article  PubMed  Google Scholar 

  3. Sackeim HA . The definition and meaning of treatment-resistant depression. J Clin Psychiatry 2001; 62(Suppl 16): 10–17.

    CAS  PubMed  Google Scholar 

  4. Serretti A, Lilli R, Smeraldi E . Pharmacogenetics in affective disorders. Eur J Pharmacol 2002; 438: 117–128.

    Article  CAS  PubMed  Google Scholar 

  5. Veenstra-VanderWeele J, Anderson GM, Cook Jr EH . Pharmacogenetics and the serotonin system: initial studies and future directions. Eur J Pharmacol 2000; 410: 165–181.

    Article  CAS  PubMed  Google Scholar 

  6. Lerer B, Macciardi F . Pharmacogenetics of antidepressant and mood-stabilizing drugs: a review of candidate–gene studies and future research directions. Int J Neuropsychopharmacol 2002; 5: 255–275.

    Article  CAS  PubMed  Google Scholar 

  7. Lesch K-P, Bengel D, Heils A, Sabol SZ, Greenberg BD, Petri S et al. Association of anxiety-related traits with a polymorphism in the serotonin transporter gene regulatory region. Science 1996; 274: 1527–1531.

    Article  CAS  PubMed  Google Scholar 

  8. Pollock BG, Ferrell RE, Mulsant BH, Mazumdar S, Miller M, Sweet RA et al. Allelic variation in the serotonin transporter promoter affects onset of paroxetine treatment response in late-life depression. Neuropsychopharmacology 2000; 23: 587–590.

    Article  CAS  PubMed  Google Scholar 

  9. Zanardi R, Serretti A, Rossini D, Franchini L, Cusin C, Lattuada E et al. Factors affecting fluvoxamine antidepressant activity: influence of pindolol and 5-HTTLPR in delusional and nondelusional depression. Biol Psychiatry 2001; 50: 323–330.

    Article  CAS  PubMed  Google Scholar 

  10. Durham LK, Webb SM, Milos PM, Clary CM, Seymour AB . The serotonin transporter polymorphism, 5HTTLPR, is associated with a faster response time to sertraline in an elderly population with major depressive disorder. Psychopharmacology (Berl) 2003 Epub: DOI: 10.1007/s00213-003-1562-3.

  11. Kim DK, Lim SW, Lee S, Sohn SE, Kim S, Hahn CG et al. Serotonin transporter gene polymorphism and antidepressant response. NeuroReport 2000; 11: 215–219.

    Article  CAS  PubMed  Google Scholar 

  12. Yu YW, Tsai SJ, Chen TJ, Lin CH, Hong CJ . Association study of the serotonin transporter promoter polymorphism and symptomatology and antidepressant response in major depressive disorders. Mol Psychiatry 2002; 7: 1115–1119.

    Article  CAS  PubMed  Google Scholar 

  13. Walther DJ, Peter JU, Bashammakh S, Hortnagl H, Voits M, Fink H et al. Synthesis of serotonin by a second tryptophan hydroxylase isoform. Science 2003; 299: 76.

    Article  CAS  PubMed  Google Scholar 

  14. Sanchez C, Hyttel J . Comparison of the effects of antidepressants and their metabolites on reuptake of biogenic amines and on receptor binding. Cell Mol Neurobiol 1999; 19: 467–489.

    Article  CAS  PubMed  Google Scholar 

  15. Sargent P, Williamson DJ, Pearson G, Odontiadis J, Cowen PJ . Effect of paroxetine and nefazodone on 5-HT1A receptor sensitivity. Psychopharmacology (Berl) 1997; 132: 296–302.

    Article  CAS  Google Scholar 

  16. Zanardi R, Artigas F, Moresco R, Colombo C, Messa C, Gobbo C et al. Increased 5-hydroxytryptamine-2 receptor binding in the frontal cortex of depressed patients responding to paroxetine treatment: a positron emission tomography scan study. J Clin Psychopharmacol 2001; 21: 53–58.

    Article  CAS  PubMed  Google Scholar 

  17. Kim SW, Park SY, Hwang O . Up-regulation of tryptophan hydroxylase expression and serotonin synthesis by sertraline. Mol Pharmacol 2002; 61: 778–785.

    Article  CAS  PubMed  Google Scholar 

  18. Stokes AH, Xu Y, Daunais JA, Tamir H, Gershon MD, Butkerait P et al. p-ethynylphenylalanine: a potent inhibitor of tryptophan hydroxylase. J Neurochem 2000; 74: 2067–2073.

    Article  CAS  PubMed  Google Scholar 

  19. Zimmer L, Luxen A, Giacomelli F, Pujol JF . Short- and long-term effects of p-ethynylphenylalanine on brain serotonin levels. Neurochem Res 2002; 27: 269–275.

    Article  CAS  PubMed  Google Scholar 

  20. Yoshida K, Naito S, Takahashi H, Sato K, Ito K, Kamata M et al. Monoamine oxidase: a gene polymorphism, tryptophan hydroxylase gene polymorphism and antidepressant response to fluvoxamine in Japanese patients with major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry 2002; 26: 1279–1283.

    Article  CAS  PubMed  Google Scholar 

  21. Cusin C, Serretti A, Zanardi R, Lattuada E, Rossini D, Lilli R et al. Influence of monoamine oxidase A and serotonin receptor 2A polymorphisms in SSRI antidepressant activity. Int J Neuropsychopharmacol 2002; 5: 27–35.

    Article  CAS  PubMed  Google Scholar 

  22. Serretti A, Zanardi R, Rossini D, Cusin C, Lilli R, Smeraldi E et al. Influence of tryptophan hydroxylase and serotonin transporter genes on fluvoxamine antidepressant activity. Mol Psychiatry 2001; 6: 586–592.

    Article  CAS  PubMed  Google Scholar 

  23. Serretti A, Zanardi R, Cusin C, Rossini D, Lorenzi C, Smeraldi E . Tryptophan hydroxylase gene associated with paroxetine antidepressant activity. Eur Neuropsychopharmacol 2001; 11: 375–380.

    Article  CAS  PubMed  Google Scholar 

  24. McGrath PJ, Stewart JW, Petkova E, Quitkin FM, Amsterdam JD, Fawcett J et al. Predictors of relapse during fluoxetine continuation or maintenance treatment of major depression. J Clin Psychiatry 2000; 61: 518–524.

    Article  CAS  PubMed  Google Scholar 

  25. First M, Spitzer R, Gibbon M, Williams JBW . Structured Clinical Interview for DSM-IV Axis I Disorders—Patient Edition (SCID-I/P), Version 2.0. 1995.

  26. Stewart JW, Quitkin FM, McGrath PJ, Amsterdam J, Fava M, Fawcett J et al. Use of pattern analysis to predict differential relapse of remitted patients with major depression during 1 year of treatment with fluoxetine or placebo. Arch Gen Psychiatry 1998; 55: 334–343.

    Article  CAS  PubMed  Google Scholar 

  27. Quitkin FM, Rabkin JG, Ross D, Stewart JW . Identification of true drug response to antidepressants. Use of pattern analysis. Arch Gen Psychiatry 1984; 41: 782–786.

    Article  CAS  PubMed  Google Scholar 

  28. Quitkin FM . Placebos, drug effects, and study design: a clinician's guide. Am J Psychiatry 1999; 156: 829–836.

    Article  CAS  PubMed  Google Scholar 

  29. Iyengar S, Seaman M, Deinard AS, Rosenbaum HC, Sirugo G, Castiglione CM et al. Analyses of cross species polymerase chain reaction products to infer the ancestral state of human polymorphisms. DNA Sequence 1998; 8: 317–327.

    Article  CAS  PubMed  Google Scholar 

  30. Chen X, Levine L, Kwok PY . Fluorescence polarization in homogeneous nucleic acid analysis. Genome Res 1999; 9: 492–498.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Hamilton SP, Slager SL, Heiman GA, Deng Z, Haghighi F, Klein DF et al. Evidence for a susceptibility locus for panic disorder near the catechol-O-methyltransferase gene on chromosome 22. Biol Psychiatry 2002; 51: 591–601.

    Article  CAS  PubMed  Google Scholar 

  32. Rozen S, Skaletsky HJ . Primer3 on the WWW for general users and for biologist programmers. In: Krawetz S, Misener S. (eds). Bioinformatics Methods and Protocols. Human Press: Totowa, NJ, 2000; 365–386.

    Google Scholar 

  33. Melke J, Landen M, Baghei F, Rosmond R, Holm G, Bjorntorp P et al. Serotonin transporter gene polymorphisms are associated with anxiety-related personality traits in women. Am J Med Genet 2001; 105: 458–463.

    Article  CAS  PubMed  Google Scholar 

  34. Ihaka R, Gentleman R. R : A language for data analysis and graphics. J Comput Graph Stat 1996; 5: 299–314.

    Google Scholar 

  35. Freidlin B, Zheng G, Li Z, Gastwirth JL . Trend tests for case–control studies of genetic markers: power, sample size and robustness. Hum Hered 2002; 53: 146–152.

    Article  CAS  PubMed  Google Scholar 

  36. Sham PC, Curtis D . Monte Carlo tests for associations between disease and alleles at highly polymorphic loci. Ann Hum Genet 1995; 59(Part 1): 97–105.

    Article  CAS  PubMed  Google Scholar 

  37. Schneider S, Roessli D, Excoffier L . Arlequin: A Software for Population Genetics Data Analysis, Ver 2.000. Genetics and Biometry Lab, Department of Anthropology, University of Geneva. Geneva, Switz, 2000.

    Google Scholar 

  38. Ke X, Cardon LR . Efficient selective screening of haplotype tag SNPs. Bioinformatics 2003; 19: 287–288.

    Article  CAS  PubMed  Google Scholar 

  39. Abecasis GR, Cookson WO . GOLD—graphical overview of linkage disequilibrium. Bioinformatics 2000; 16: 182–183.

    Article  CAS  PubMed  Google Scholar 

  40. Bacanu SA, Devlin B, Roeder K . The power of genomic control. Am J Hum Genet 2000; 66: 1933–1944.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Johnson GC, Esposito L, Barratt BJ, Smith AN, Heward J, Di Genova G et al. Haplotype tagging for the identification of common disease genes. Nat Genet 2001; 29: 233–237.

    Article  CAS  PubMed  Google Scholar 

  42. Cardon LR, Palmer LJ . Population stratification and spurious allelic association. Lancet 2003; 361: 598–604.

    Article  PubMed  Google Scholar 

  43. Devlin B, Roeder K, Wasserman L . Genomic control, a new approach to genetic-based association studies. Theor Popul Biol 2001; 60: 155–166.

    Article  CAS  PubMed  Google Scholar 

  44. Pritchard JK, Rosenberg NA . Use of unlinked genetic markers to detect population stratification in association studies. Am J Hum Genet 1999; 65: 220–228.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Weinshilboum R . Inheritance and drug response. N Engl J Med 2003; 348: 529–537.

    Article  PubMed  Google Scholar 

  46. Gelernter J, Kranzler H, Coccaro EF, Siever LJ, New AS . Serotonin transporter protein gene polymorphism and personality measures in African American and European American subjects. Am J Psychiatry 1998; 155: 1332–1338.

    Article  CAS  PubMed  Google Scholar 

  47. Caspi A, Sugden K, Moffitt TE, Taylor A, Craig IW, Harrington H et al. Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene. Science 2003; 301: 386–389.

    Article  CAS  PubMed  Google Scholar 

  48. Gelernter J, Kranzler H, Cubells JF . Serotonin transporter protein (SLC6A4) allele and haplotype frequencies and linkage disequilibria in African- and European-American and Japanese populations and in alcohol-dependent subjects. Hum Genet 1997; 101: 243–246.

    Article  CAS  PubMed  Google Scholar 

  49. Gabriel SB, Schaffner Sf, Nguyen H, Moore JM, Roy J, Blumenstiel B et al. The structure of haplotype blocks in the human genome. Science 2002; 296: 2225–2229.

    Article  CAS  PubMed  Google Scholar 

  50. Rioux JD, Daly MJ, Silverberg MS, Lindblad K, Steinhart H, Cohen Z et al. Genetic variation in the 5q31 cytokine gene cluster confers susceptibility to Crohn disease. Nat Genet 2001; 29: 223–228.

    Article  CAS  PubMed  Google Scholar 

  51. Martin ER, Lai EH, Gilbert JR, Rogala AR, Afshari AJ, Riley J et al. SNPing away at complex diseases: analysis of single-nucleotide polymorphisms around APOE in Alzheimer disease. Am J Hum Genet 2000; 67: 383–394.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Zhang K, Calabrese P, Nordborg M, Sun F . Haplotype block structure and its applications to association studies: power and study designs. Am J Hum Genet 2002; 71: 1386–1394.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Bialik RJ, Ravindran AV, Bakish D, Lapierre YD . A comparison of placebo responders and nonresponders in subgroups of depressive disorder. J Psychiatry Neurosci 1995; 20: 265–270.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Rausch JL, Johnson ME, Fei YJ, Li JQ, Shendarkar N, Hobby HM et al. Initial conditions of serotonin transporter kinetics and genotype: influence on SSRI treatment trial outcome. Biol Psychiatry 2002; 51: 723–732.

    Article  CAS  PubMed  Google Scholar 

  55. Mayberg HS, Silva JA, Brannan SK, Tekell JL, Mahurin RK, McGinnis S et al. The functional neuroanatomy of the placebo effect. Am J Psychiatry 2002; 159: 728–737.

    Article  PubMed  Google Scholar 

  56. Leuchter AF, Cook IA, Witte EA, Morgan M, Abrams M . Changes in brain function of depressed subjects during treatment with placebo. Am J Psychiatry 2002; 159: 122–129.

    Article  PubMed  Google Scholar 

  57. Reich DE, Goldstein DB . Detecting association in a case–control study while correcting for population stratification. Genet Epidemiol 2001; 20: 4–16.

    Article  CAS  PubMed  Google Scholar 

  58. Devlin B, Roeder K, Bacanu SA . Unbiased methods for population-based association studies. Genet Epidemiol 2001; 21: 273–284.

    Article  CAS  PubMed  Google Scholar 

  59. Hacia JG, Fan JB, Ryder O, Jin L, Edgemon K, Ghandour G et al. Determination of ancestral alleles for human single-nucleotide polymorphisms using high-density oligonucleotide arrays. Nat Genet 1999; 22: 164–167.

    Article  CAS  PubMed  Google Scholar 

  60. Dupont WD, Plummer J . Power and sample size calculations *1: A review and computer program. Controlled Clin Trials 1990; 11: 116–128.

    Article  CAS  PubMed  Google Scholar 

  61. Weiss KM, Clark AG . Linkage disequilibrium and the mapping of complex human traits. Trends Genet 2002; 18: 19–24.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This paper is dedicated to the memory of Ira Herskowitz. We wish to thank the subjects of this study for their participation. Funding for this study was provided by NARSAD (SPH), HHMI (EJP), NIMH Grant # R10 MH56058 (PJM) and Grant CA 94919 (SLS) from the National Cancer Institute. We also wish to acknowledge Carmen Prieto, Maria Bautista, Manuel Abreu, and David Mayo for their expert technical assistance and the staff of the Depression Evaluation Service at the New York State Psychiatric Institute for assistance with patient recruitment and sample collection. We would also like to acknowledge TECAN-US for the use of an ULTRA plate reader.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S P Hamilton.

Additional information

Supplementary Information accompanies the paper on Molecular Psychiatry website (http://www.nature.com/mp)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peters, E., Slager, S., McGrath, P. et al. Investigation of serotonin-related genes in antidepressant response. Mol Psychiatry 9, 879–889 (2004). https://doi.org/10.1038/sj.mp.4001502

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4001502

Keywords

This article is cited by

Search

Quick links