Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Research Article
  • Published:

Genetic polymorphisms of the RGS4 and dorsolateral prefrontal cortex morphometry among first episode schizophrenia patients

Abstract

Polymorphisms of the gene encoding the regulator of G-protein signaling subtype 4 (RGS4) may confer risk for schizophrenia.1 DNA microarray studies of postmortem brain samples have shown RGS4 underexpression in the dorsolateral prefrontal cortex (DLPFC, area 9), motor and visual cortices in schizophrenia patients relative to control subjects.2 Underexpression of RGS4 in DLPFC is pathophysiologically significant because DLPFC pathology in schizophrenia has been supported by neurocognitive,3,4 structural5 and functional6,7 imaging, postmortem,8 cellular9,10 and molecular11 pathological studies. For these reasons, we examined the association of DLPFC gray matter volume with RGS4 polymorphisms in a series of antipsychotic-naïve first-episode schizophrenia patients and control subjects. We hypothesized that volumetric alterations of the DLPFC would be associated with RGS4 polymorphisms and that these differences would be more pronounced in patients than in controls. We observed robust volumetric differences across the genotypes in the pooled sample of patients and control subjects; when separately analyzed, we observed differences within the patient group (n=30) but not in control subject (n=27) group. The findings suggest that RGS4 polymorphisms may contribute to structural alterations in the DLPFC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Chowdari KV, Mirnics K, Semwal P, Wood J, Lawrence E, Bhatia T et al. Association and linkage analyses of RGS4 polymorphisms in schizophrenia. Hum Mol Genet 2002; 11: 1373–1380.

    Article  CAS  Google Scholar 

  2. Mirnics K, Middleton FA, Stanwood GD, Lewis DA, Levitt P . Disease-specific changes in regulator of G-protein signaling 4 (RGS4) expression in schizophrenia. Mol Psychiatry 2001; 6: 293–301.

    Article  CAS  Google Scholar 

  3. Gold JM, Harvey PD . Cognitive deficits in schizophrenia. Psychiatr Clin North Am 1993; 16: 295–312.

    Article  CAS  Google Scholar 

  4. Goldman-Rakic PS, Selemon LD . Functional and anatomical aspects of prefrontal pathology in schizophrenia. Schizophr Bull 1997; 23: 437–458.

    Article  CAS  Google Scholar 

  5. Shenton ME, Dickey CD, Frumin M, McCarley RW . A review of MRI findings in schizophrenia. Schizophr Res 2001; 49: 1–52.

    Article  CAS  Google Scholar 

  6. Weinberger DR, Berman KF, Zec RF . Physiologic dysfunction of dorsolateral prefrontal cortex in schizophrenia. I. Regional cerebral blood flow evidence. Arch Gen Psychiatry 1986; 43: 114–124.

    Article  CAS  Google Scholar 

  7. Barch DM, Carter CS, Braver TS, Sabb FW, MacDonald III A, Noll DC et al. Selective deficits in prefrontal cortex function in medication-naive patients with schizophrenia. Arch Gen Psychiatry 2001; 58: 280–288.

    Article  CAS  Google Scholar 

  8. Selemon LD, Goldman-Rakic PS . The reduced neuropil hypothesis: a circuit based model of schizophrenia. Biol Psychiatry 1999; 45: 17–25.

    Article  CAS  Google Scholar 

  9. Selemon LD, Rajkowska G, Goldman-Rakic PS . Abnormally high neuronal density in the schizophrenic cortex. A morphometric analysis of prefrontal area 9 and occipital area 17. Arch Gen Psychiatry 1995; 52: 805–818, discussion 819–820.

    Article  CAS  Google Scholar 

  10. Pierri JN, Chaudry AS, Woo TU, Lewis DA . Alterations in chandelier neuron axon terminals in the prefrontal cortex of schizophrenic subjects. Am J Psychiatry 1999; 156: 1709–1719.

    CAS  Google Scholar 

  11. Mirnics K, Middleton FA, Marquez A, Lewis DA, Levitt P . Molecular characterization of schizophrenia viewed by microarray analysis of gene expression in prefrontal cortex. Neuron 2000; 28: 53–67.

    Article  CAS  Google Scholar 

  12. Harrison PJ, Owen MJ . Genes for schizophrenia? Recent findings and their pathophysiological implications. Lancet 2003; 361: 417–419.

    Article  CAS  Google Scholar 

  13. Brzustowicz LM, Hodgkinson KA, Chow EWnC, Honer WG, Bassett AS . Location of a major susceptibility locus for familial schizophrenia on chromosome 1q21–q22. Science 2000; 288: 678–682.

    Article  CAS  Google Scholar 

  14. Williams N, Preece A, Spurlock G, Norton N, Williams HJ, McCreadie RG et al. Support for RGS4 as a susceptibility gene for schizophrenia. Biol Psychiatry 2004; 55: 192–195.

    Article  CAS  Google Scholar 

  15. Morris DW, Rodgers A, McGhee KA, Schwaiger S, Scully P, Quinn J et al. Confirming RGS4 as a susceptibility gene for schizophrenia. Am J Med Genet 2004; 125B: 50–53.

    Article  Google Scholar 

  16. Taymans JM, Wintmolders C, Te Riele P, Jurzak M, Groenewegen HJ, Leysen JE et al. Detailed localization of regulator of G protein signaling 2 messenger ribonucleic acid and protein in the rat brain. Neuroscience 2002; 114: 39–53.

    Article  CAS  Google Scholar 

  17. Tsai G, Passani LA, Slusher BS, Carter R, Baer L, Kleinman JE et al. Abnormal excitatory neurotransmitter metabolism in schizophrenic brains. Arch Gen Psychiatry 1995; 52: 829–836.

    Article  CAS  Google Scholar 

  18. Tsai G, van Kammen DP, Chen S, Kelley ME, Grier A, Coyle JT . Glutamatergic neurotransmission involves structural and clinical deficits of schizophrenia. Biol Psychiatry 1998; 44: 667–674.

    Article  CAS  Google Scholar 

  19. Tsai G, Coyle JT . Glutamatergic mechanisms in schizophrenia. Annu Rev Pharmacol Toxicol 2002; 42: 165–179.

    Article  CAS  Google Scholar 

  20. De Vries L, Zheng B, Fischer T, Elenko E, Farquhar MG . The regulator of G protein signaling family. Annu Rev Pharmacol Toxicol 2000; 40: 235–271.

    Article  CAS  Google Scholar 

  21. Keshavan MS, Stanley JA, Montrose DM, Minshew NJ, Pettegrew JW . Prefrontal membrane phospholipid metabolism of child and adolescent offspring at risk for schizophrenia or schizoaffective disorder: an in vivo (31)P MRS Study. Mol Psychiatry 2003; 8: 316–323.

    Article  CAS  Google Scholar 

  22. Pettegrew JW, Keshavan MS, Panchalingam K, Strychor S, Kaplan DB, Tretta MG et al. Alterations in brain high-energy phosphate and membrane phospholipid metabolism in first-episode, drug-naive schizophrenics. A pilot study of the dorsal prefrontal cortex by in vivo phosphorus-31 nuclear magnetic resonance spectroscopy. Arch Gen Psychiatry 1991; 48: 563–568.

    Article  CAS  Google Scholar 

  23. Prasad KMR, Chowdari KV, Nimgaonkar VL, Lewis DA, Mirnics K, Lewitt P et al. RGS4 Gene Polymorphism, cognition, and in vivo neurobiology in first episode schizophrenia. Schizophr Res 2004; 67: 28.

    Google Scholar 

  24. Keshavan MS, Pettegrew JW, Reynolds III CF, Panchalingam KS, Montrose D, Miewald J et al. Biological correlates of slow wave sleep deficits in functional psychoses: 31P-magnetic resonance spectroscopy. Psychiatry Res 1995; 57: 91–100.

    Article  CAS  Google Scholar 

  25. American Psychiatric Association. Diagnostic & Statistical Manual of Mental Disorders. American Psychiatric Association: Washington, DC, 1994.

  26. Gilbert AR, Rosenberg DR, Harenski K, Spencer S, Sweeney JA, Keshavan MS . Thalamic volumes in patients with first-episode schizophrenia. Am J Psychiatry 2001; 158: 618–624.

    Article  CAS  Google Scholar 

  27. Keshavan MS, Anderson S, Beckwith C, Nash K, Pettegrew JW, Krishnan KR . A comparison of stereology and segmentation techniques for volumetric measurements of lateral ventricles in magnetic resonance imaging. Psychiatry Res 1995; 61: 53–60.

    Article  CAS  Google Scholar 

  28. Schwarzkopf SB, Olson SC, Coffman JA, Nasrallah HA . Third and lateral ventricular volumes in schizophrenia: support for progressive enlargement of both structures. Psychopharmacol Bull 1990; 26: 385–391.

    CAS  PubMed  Google Scholar 

  29. Keshavan MS, Bagwell WW, Haas GL, Sweeney JA, Schooler NR, Pettegrew JW . Changes in caudate volume with neuroleptic treatment. Lancet 1994; 344: 1434.

    Article  CAS  Google Scholar 

  30. Thaminy S, Auerbach D, Arnoldo A, Stagljar I . Identification of novel ErbB3-interacting factors using the split-ubiquitin membrane yeast two-hybrid system. Genome Res 2003; 13: 1744–1753.

    Article  CAS  Google Scholar 

  31. Shifman S, Bronstein M, Sternfeld M, Pisante-Shalom A, Lev-Lehman E, Weizman A et al. A highly significant association between a COMT haplotype and schizophrenia. Am J Hum Genet 2002; 71: 1296–1302.

    Article  CAS  Google Scholar 

  32. Glatt SJ, Faraone SV, Tsuang MT . Association between a functional catechol O-methyltransferase gene polymorphism and schizophrenia: meta-analysis of case-control and family-based studies. Am J Psychiatry 2003; 160: 469–476.

    Article  Google Scholar 

  33. Straub RE, Jiang Y, MacLean CJ, Ma Y, Webb BT, Myakishev MV et al. Genetic variation in the 6p22.3 gene DTNBP1, the human ortholog of the mouse dysbindin gene, is associated with schizophrenia. Am J Hum Genet 2002; 71: 337–348.

    Article  CAS  Google Scholar 

  34. Schwab SG, Knapp M, Mondabon S, Hallmayer J, Borrmann-Hassenbach M, Albus M et al. Support for association of schizophrenia with genetic variation in the 6p22.3 gene, dysbindin, in sib-pair families with linkage and in an additional sample of triad families. Am J Hum Genet 2003; 72: 185–190.

    Article  CAS  Google Scholar 

  35. Lewis DA, Levitt P . Schizophrenia as a disorder of neurodevelopment. Annu Rev Neurosci 2002; 25: 409–432.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported through Grants NIMH/APIRE PMRTP MH19126 (KMP), R01 64023, K02 01180, NARSAD Established Investigator Award (MSK) and MH01489, MH56242 and MH53459 (VLN). We thank Dr Bernie Devlin, PhD and Dr Weiting Xie for their assistance in statistical analysis. We thank Drs Cameron S Carter, MD (CSC), Gretchen L Haas, PhD (GLH), Nina R Schooler, PhD (NRS), and the clinical core staff of the Center for the Neuroscience of Mental Disorders (MH45156) for their assistance in diagnostic and psychopathological assessments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M S Keshavan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prasad, K., Chowdari, K., Nimgaonkar, V. et al. Genetic polymorphisms of the RGS4 and dorsolateral prefrontal cortex morphometry among first episode schizophrenia patients. Mol Psychiatry 10, 213–219 (2005). https://doi.org/10.1038/sj.mp.4001562

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4001562

Keywords

This article is cited by

Search

Quick links