Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Review Article

Genetic tests of biologic systems in affective disorders

Abstract

To liberate candidate gene analyses from criticisms of inexhaustiveness of examination of specific candidate genes, or incompleteness in the choice of candidate genes to study for specific neurobiological pathways, study of sizeable sets of genes pertinent to each putative pathophysiological pathway is required. For many years, genes have been tested in a ‘one by one’ manner for association with major affective disorders, primarily bipolar illness. However, it is conceivable that not individual genes but abnormalities in several genes within a system or in several neuronal, neural, or hormonal systems are implicated in the functional hypotheses for etiology of affective disorders. Compilation of candidate genes for entire pathways is a challenge, but can reasonably be carried out for the major affective disorders as discussed here. We present here five groupings of genes implicated by neuropharmacological and other evidence, which suggest 252 candidate genes worth examining. Inexhaustiveness of gene interrogation would apply to many studies in which only one polymorphism per gene is analyzed. In contrast to whole-genome association studies, a study of a limited number of candidate genes can readily exploit information on genomic sequence variations obtained from databases and/or resequencing, and has an advantage of not having the complication of an extremely stringent statistical criterion for association.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Straub RE, Jiang Y, MacLean CJ, Ma Y, Webb BT, Myakishev MV et al. Genetic variation in the 6p22.3 gene DTNBP1, the human ortholog of the mouse dysbindin gene, is associated with schizophrenia. Am J Hum Genet 2002; 71: 337–348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Stefansson H, Sigurdsson E, Steinthorsdottir V, Bjornsdottir S, Sigmundsson T, Ghosh S et al. Neuregulin 1 and susceptibility to schizophrenia. Am J Hum Genet 2002; 71: 877–892.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Chumakov I, Blumenfeld M, Guerassimenko O, Cavarec L, Palicio M, Abderrahim H et al. Genetic and physiological data implicating the new human gene G72 and the gene for D-amino acid oxidase in schizophrenia. Proc Natl Acad Sci USA 2002; 99: 13675–13680.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hattori E, Liu C, Badner JA, Bonner TI, Christian SL, Maheshwari M et al. Polymorphisms at the G72/G30 gene locus, on 13q33, are associated with bipolar disorder in two independent pedigree series. Am J Hum Genet 2003; 72: 1131–1140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Maier W, Zobel A, Rietschel M . Genetics of schizophrenia and affective disorders. Pharmacopsychiatry 2003; 36 (Suppl 3): S195–S202.

    CAS  PubMed  Google Scholar 

  6. Addington AM, Gornick M, Sporn AL, Gogtay N, Greenstein D, Lenane M et al. Polymorphisms in the 13q33.2 gene G72/G30 are associated with childhood-onset schizophrenia and psychosis not otherwise specified. Biol Psychiatry 2004; 55: 976–980.

    Article  CAS  PubMed  Google Scholar 

  7. Chen YS, Akula N, Detera-Wadleigh SD, Schulze TG, Thomas J, Potash JB et al. Findings in an independent sample support an association between bipolar affective disorder and the G72/G30 locus on chromosome 13q33. Mol Psychiatry 2004; 9: 87–92.

    Article  CAS  PubMed  Google Scholar 

  8. Schumacher J, Jamra RA, Freudenberg J, Becker T, Ohlraun S, Otte AC et al. Examination of G72 and D-amino-acid oxidase as genetic risk factors for schizophrenia and bipolar affective disorder. Mol Psychiatry 2004; 9: 203–207.

    Article  CAS  PubMed  Google Scholar 

  9. Risch NJ . Searching for genetic determinants in the new millennium. Nature 2000; 405: 847–856.

    CAS  PubMed  Google Scholar 

  10. Lohmueller KE, Pearce CL, Pike M, Lander ES, Hirschhorn JN . Meta-analysis of genetic association studies supports a contribution of common variants to susceptibility to common disease. Nat Genet 2003; 33: 177–182.

    Article  CAS  PubMed  Google Scholar 

  11. Guengerich FP . The Environmental Genome Project: functional analysis of polymorphisms. Environ Health Perspect 1998; 106: 365–368.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Xu Q, Jia YB, Zhang BY, Zou K, Tao YB, Wang YP et al. Association study of an SNP combination pattern in the dopaminergic pathway in paranoid schizophrenia: a novel strategy for complex disorders. Mol Psychiatry 2004; 9: 510.

    Article  CAS  PubMed  Google Scholar 

  13. Gabriel SB, Schaffner SF, Nguyen H, Moore JM, Roy J, Blumenstiel B et al. The structure of haplotype blocks in the human genome. Science 2002; 296: 2225–2229.

    Article  CAS  PubMed  Google Scholar 

  14. Patil N, Berno AJ, Hinds DA, Barrett WA, Doshi JM, Hacker CR et al. Blocks of limited haplotype diversity revealed by high-resolution scanning of human chromosome 21. Science 2001; 294: 1719–1723.

    Article  CAS  PubMed  Google Scholar 

  15. The International HapMap Project. The International HapMap Consortium. Nature 2003; 426: 789–796.

  16. Wall JD, Pritchard JK . Assessing the performance of the haplotype block model of linkage disequilibrium. Am J Hum Genet 2003; 73: 502–515.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Carlson CS, Eberle MA, Rieder MJ, Yi Q, Kruglyak L, Nickerson DA . Selecting a maximally informative set of single-nucleotide polymorphisms for association analyses using linkage disequilibrium. Am J Hum Genet 2004; 74: 106–120.

    Article  CAS  PubMed  Google Scholar 

  18. Risch N, Merikangas K . The future of genetic studies of complex human diseases. Science 1996; 273: 1516–1517.

    Article  CAS  PubMed  Google Scholar 

  19. Tabor HK, Risch NJ, Myers RM . Opinion: candidate-gene approaches for studying complex genetic traits: practical considerations. Nat Rev Genet 2002; 3: 391–397.

    Article  CAS  PubMed  Google Scholar 

  20. Benjamini Y, Hochberg Y . Controlling the false discovery rate—a practical and powerful approach to multiple testing. J Roy Statist Soc Ser B 1995; 57: 289–300.

    Google Scholar 

  21. Hoh J, Wille A, Ott J . Trimming, weighting, and grouping SNPs in human case–control association studies. Genome Res 2001; 11: 2115–2119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gretarsdottir S, Sveinbjornsdottir S, Jonsson HH, Jakobsson F, Einarsdottir E, Agnarsson U et al. Localization of a susceptibility gene for common forms of stroke to 5q12. Am J Hum Genet 2002; 70: 593–603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Potash JB, DePaulo Jr JR . Searching high and low: a review of the genetics of bipolar disorder. Bipolar Disord 2000; 2: 8–26.

    Article  CAS  PubMed  Google Scholar 

  24. Atack JR, Broughton HB, Pollack SJ . Inositol monophosphatase—a putative target for Li+ in the treatment of bipolar disorder. Trends Neurosci 1995; 18: 343–349.

    Article  CAS  PubMed  Google Scholar 

  25. Hallcher LM, Sherman WR . The effects of lithium ion and other agents on the activity of myo-inositol-1-phosphatase from bovine brain. J Biol Chem 1980; 255: 10896–10901.

    CAS  PubMed  Google Scholar 

  26. Yoshikawa T, Padigaru M, Karkera JD, Sharma M, Berrettini WH, Esterling LE et al. Genomic structure and novel variants of myo-inositol monophosphatase 2 (IMPA2). Mol Psychiatry 2000; 5: 165–171.

    Article  CAS  PubMed  Google Scholar 

  27. Sjoholt G, Gulbrandsen AK, Lovlie R, Berle JO, Molven A, Steen VM . A human myo-inositol monophosphatase gene (IMPA2) localized in a putative susceptibility region for bipolar disorder on chromosome 18p11.2: genomic structure and polymorphism screening in manic-depressive patients. Mol Psychiatry 2000; 5: 172–180.

    Article  CAS  PubMed  Google Scholar 

  28. Stopkova P, Saito T, Papolos DF, Vevera J, Paclt I, Zukov I et al. Identification of PIK3C3 promoter variant associated with bipolar disorder and schizophrenia. Biol Psychiatry 2004; 55: 981–988.

    Article  CAS  PubMed  Google Scholar 

  29. Manji HK, McNamara R, Chen G, Lenox RH . Signalling pathways in the brain: cellular transduction of mood stabilisation in the treatment of manic-depressive illness. Aust N Z J Psychiatry 1999; 33 (Suppl): S65–S83.

    Article  PubMed  Google Scholar 

  30. Chowdari KV, Mirnics K, Semwal P, Wood J, Lawrence E, Bhatia T et al. Association and linkage analyses of RGS4 polymorphisms in schizophrenia. Hum Mol Genet 2002; 11: 1373–1380.

    Article  CAS  PubMed  Google Scholar 

  31. Barrett TB, Hauger RL, Kennedy JL, Sadovnick AD, Remick RA, Keck PE et al. Evidence that a single nucleotide polymorphism in the promoter of the G protein receptor kinase 3 gene is associated with bipolar disorder. Mol Psychiatry 2003; 8: 546–557.

    Article  CAS  PubMed  Google Scholar 

  32. Kakiuchi C, Iwamoto K, Ishiwata M, Bundo M, Kasahara T, Kusumi I et al. Impaired feedback regulation of XBP1 as a genetic risk factor for bipolar disorder. Nat Genet 2003; 35: 171–175.

    Article  CAS  PubMed  Google Scholar 

  33. Spleiss O, van Calker D, Scharer L, Adamovic K, Berger M, Gebicke-Haerter PJ . Abnormal G protein alpha(s)- and alpha(i2)-subunit mRNA expression in bipolar affective disorder. Mol Psychiatry 1998; 3: 512–520.

    Article  CAS  PubMed  Google Scholar 

  34. Ram A, Guedj F, Cravchik A, Weinstein L, Cao Q, Badner JA et al. No abnormality in the gene for the G protein stimulatory alpha subunit in patients with bipolar disorder. Arch Gen Psychiatry 1997; 54: 44–48.

    Article  CAS  PubMed  Google Scholar 

  35. Thome J, Sakai N, Shin K, Steffen C, Zhang YJ, Impey S et al. cAMP response element-mediated gene transcription is upregulated by chronic antidepressant treatment. J Neurosci 2000; 20: 4030–4036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Maldonado R, Smadja C, Mazzucchelli C, Sassone-Corsi P, Mazucchelli C . Altered emotional and locomotor responses in mice deficient in the transcription factor CREM. Proc Natl Acad Sci USA 1999; 96: 14094–14099.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Takahashi M, Terwilliger R, Lane C, Mezes PS, Conti M, Duman RS . Chronic antidepressant administration increases the expression of cAMP-specific phosphodiesterase 4A and 4B isoforms. J Neurosci 1999; 19: 610–618.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhu J, Mix E, Winblad B . The antidepressant and antiinflammatory effects of rolipram in the central nervous system. CNS Drug Rev 2001; 7: 387–398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Molnar M, Potkin SG, Bunney WE, Jones EG . MRNA expression patterns and distribution of white matter neurons in dorsolateral prefrontal cortex of depressed patients differ from those in schizophrenia patients. Biol Psychiatry 2003; 53: 39–47.

    Article  CAS  PubMed  Google Scholar 

  40. Xing G, Russell S, Hough C, O'Grady J, Zhang L, Yang S et al. Decreased prefrontal CaMKII alpha mRNA in bipolar illness. Neuroreport 2002; 13: 501–505.

    Article  CAS  PubMed  Google Scholar 

  41. Albert KA, Hemmings Jr HC, Adamo AI, Potkin SG, Akbarian S, Sandman CA et al. Evidence for decreased DARPP-32 in the prefrontal cortex of patients with schizophrenia. Arch Gen Psychiatry 2002; 59: 705–712.

    Article  CAS  PubMed  Google Scholar 

  42. Toyota T, Yamada K, Detera-Wadleigh SD, Yoshikawa T . Analysis of a cluster of polymorphisms in AKT1 gene in bipolar pedigrees: a family-based association study. Neurosci Lett 2003; 339: 5–8.

    Article  CAS  PubMed  Google Scholar 

  43. Emamian ES, Hall D, Birnbaum MJ, Karayiorgou M, Gogos JA . Convergent evidence for impaired AKT1-GSK3beta signaling in schizophrenia. Nat Genet 2004; 36: 131–137.

    Article  CAS  PubMed  Google Scholar 

  44. Bymaster FP, Felder CC . Role of the cholinergic muscarinic system in bipolar disorder and related mechanism of action of antipsychotic agents. Mol Psychiatry 2002; 7 (Suppl 1): S57–S63.

    Article  CAS  PubMed  Google Scholar 

  45. Krystal JH, Sanacora G, Blumberg H, Anand A, Charney DS, Marek G et al. Glutamate and GABA systems as targets for novel antidepressant and mood-stabilizing treatments. Mol Psychiatry 2002; 7 (Suppl 1): S71–S80.

    Article  CAS  PubMed  Google Scholar 

  46. Shytle RD, Silver AA, Lukas RJ, Newman MB, Sheehan DV, Sanberg PR . Nicotinic acetylcholine receptors as targets for antidepressants. Mol Psychiatry 2002; 7: 525–535.

    Article  CAS  PubMed  Google Scholar 

  47. Crawley JN, Corwin RL . Biological actions of cholecystokinin. Peptides 1994; 15: 731–755.

    Article  CAS  PubMed  Google Scholar 

  48. Lieb K, Treffurth Y, Berger M, Fiebich BL . Substance P and affective disorders: new treatment opportunities by neurokinin 1 receptor antagonists? Neuropsychobiology 2002; 45 (Suppl 1): 2–6.

    Article  CAS  PubMed  Google Scholar 

  49. Young EA, Haskett RF, Murphy-Weinberg V, Watson SJ, Akil H . Loss of glucocorticoid fast feedback in depression. Arch Gen Psychiatry 1991; 48: 693–699.

    Article  CAS  PubMed  Google Scholar 

  50. Duman RS, Malberg J, Thome J . Neural plasticity to stress and antidepressant treatment. Biol Psychiatry 1999; 46: 1181–1191.

    Article  CAS  PubMed  Google Scholar 

  51. McEwen BS . The neurobiology of stress: from serendipity to clinical relevance. Brain Res 2000; 886: 172–189.

    Article  CAS  PubMed  Google Scholar 

  52. Nestler EJ, Barrot M, DiLeone RJ, Eisch AJ, Gold SJ, Monteggia LM . Neurobiology of depression. Neuron 2002; 34: 13–25.

    Article  CAS  PubMed  Google Scholar 

  53. Bremner JD, Narayan M, Anderson ER, Staib LH, Miller HL, Charney DS . Hippocampal volume reduction in major depression. Am J Psychiatry 2000; 157: 115–118.

    Article  CAS  PubMed  Google Scholar 

  54. Sheline YI, Wang PW, Gado MH, Csernansky JG, Vannier MW . Hippocampal atrophy in recurrent major depression. Proc Natl Acad Sci USA 1996; 93: 3908–3913.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Raison CL, Miller AH . When not enough is too much: the role of insufficient glucocorticoid signaling in the pathophysiology of stress-related disorders. Am J Psychiatry 2003; 160: 1554–1565.

    Article  PubMed  Google Scholar 

  56. Yau JL, Seckl JR . 11Beta-hydroxysteroid dehydrogenase type I in the brain; thickening the glucocorticoid soup. Mol Psychiatry 2001; 6: 611–614.

    Article  CAS  PubMed  Google Scholar 

  57. Smith MA, Makino S, Kvetnansky R, Post RM . Stress and glucocorticoids affect the expression of brain-derived neurotrophic factor and neurotrophin-3 mRNAs in the hippocampus. J Neurosci 1995; 15: 1768–1777.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Nibuya M, Morinobu S, Duman RS . Regulation of BDNF and trkB mRNA in rat brain by chronic electroconvulsive seizure and antidepressant drug treatments. J Neurosci 1995; 15: 7539–7547.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Russo-Neustadt AA, Beard RC, Huang YM, Cotman CW . Physical activity and antidepressant treatment potentiate the expression of specific brain-derived neurotrophic factor transcripts in the rat hippocampus. Neuroscience 2000; 101: 305–312.

    Article  CAS  PubMed  Google Scholar 

  60. Sklar P, Gabriel SB, McInnis MG, Bennett P, Lim YM, Tsan G et al. Family-based association study of 76 candidate genes in bipolar disorder: BDNF is a potential risk locus. Brain-derived neutrophic factor. Mol Psychiatry 2002; 7: 579–593.

    Article  CAS  PubMed  Google Scholar 

  61. Neves-Pereira M, Mundo E, Muglia P, King N, Macciardi F, Kennedy JL . The brain-derived neurotrophic factor gene confers susceptibility to bipolar disorder: evidence from a family-based association study. Am J Hum Genet 2002; 71: 651–655.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Niculescu III AB, Segal DS, Kuczenski R, Barrett T, Hauger RL, Kelsoe JR . Identifying a series of candidate genes for mania and psychosis: a convergent functional genomics approach. Physiol Genom 2000; 4: 83–91.

    Article  CAS  Google Scholar 

  63. Santarelli L, Saxe M, Gross C, Surget A, Battaglia F, Dulawa S et al. Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science 2003; 301: 805–809.

    Article  CAS  PubMed  Google Scholar 

  64. Cordeiro ML, Umbach JA, Gundersen CB . Lithium ions up-regulate mRNAs encoding dense-core vesicle proteins in nerve growth factor-differentiated PC12 cells. J Neurochem 2000; 75: 2622–2625.

    Article  CAS  PubMed  Google Scholar 

  65. Bunney WE, Bunney BG . Molecular clock genes in man and lower animals: possible implications for circadian abnormalities in depression. Neuropsychopharmacology 2000; 22: 335–345.

    Article  CAS  PubMed  Google Scholar 

  66. Cermakian N, Boivin DB . A molecular perspective of human circadian rhythm disorders. Brain Res Brain Res Rev 2003; 42: 204–220.

    Article  CAS  PubMed  Google Scholar 

  67. Shimomura K, Low-Zeddies SS, King DP, Steeves TD, Whiteley A, Kushla J et al. Genome-wide epistatic interaction analysis reveals complex genetic determinants of circadian behavior in mice. Genome Res 2001; 11: 959–980.

    Article  CAS  PubMed  Google Scholar 

  68. Hannibal J, Vrang N, Card JP, Fahrenkrug J . Light-dependent induction of cFos during subjective day and night in PACAP-containing ganglion cells of the retinohypothalamic tract. J Biol Rhythms 2001; 16: 457–470.

    Article  CAS  PubMed  Google Scholar 

  69. Hannibal J, Jamen F, Nielsen HS, Journot L, Brabet P, Fahrenkrug J . Dissociation between light-induced phase shift of the circadian rhythm and clock gene expression in mice lacking the pituitary adenylate cyclase activating polypeptide type 1 receptor. J Neurosci 2001; 21: 4883–4890.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Lewy AJ, Wehr TA, Goodwin FK, Newsome DA, Rosenthal NE . Manic-depressive patients may be supersensitive to light. Lancet 1981; 1: 383–384.

    Article  CAS  PubMed  Google Scholar 

  71. Wetterberg L, Aperia B, Beck-Friis J, Kjellman BF, Ljunggren JG, Nilsonne A et al. Melatonin and cortisol levels in psychiatric illness. Lancet 1982; 2: 100.

    Article  CAS  PubMed  Google Scholar 

  72. Kramer A, Yang FC, Snodgrass P, Li X, Scammell TE, Davis FC et al. Regulation of daily locomotor activity and sleep by hypothalamic EGF receptor signaling. Science 2001; 294: 2511–2515.

    Article  CAS  PubMed  Google Scholar 

  73. Cheng MY, Bullock CM, Li C, Lee AG, Bermak JC, Belluzzi J et al. Prokineticin 2 transmits the behavioural circadian rhythm of the suprachiasmatic nucleus. Nature 2002; 417: 405–410.

    Article  CAS  PubMed  Google Scholar 

  74. Hubble JP, Cao T, Hassanein RE, Neuberger JS, Koller WC . Risk factors for Parkinson's disease. Neurology 1993; 43: 1693–1697.

    Article  CAS  PubMed  Google Scholar 

  75. Leentjens AF, Van den AM, Metsemakers JF, Lousberg R, Verhey FR . Higher incidence of depression preceding the onset of Parkinson's disease: a register study. Mov Disord 2003; 18: 414–418.

    Article  PubMed  Google Scholar 

  76. Giasson BI, Lee VM . Are ubiquitination pathways central to Parkinson's disease? Cell 2003; 114: 1–8.

    Article  CAS  PubMed  Google Scholar 

  77. Imai Y, Soda M, Inoue H, Hattori N, Mizuno Y, Takahashi R . An unfolded putative transmembrane polypeptide, which can lead to endoplasmic reticulum stress, is a substrate of Parkin. Cell 2001; 105: 891–902.

    Article  CAS  PubMed  Google Scholar 

  78. Zhang Y, Gao J, Chung KK, Huang H, Dawson VL, Dawson TM . Parkin functions as an E2-dependent ubiquitin-protein ligase and promotes the degradation of the synaptic vesicle-associated protein, CDCrel-1. Proc Natl Acad Sci USA 2000; 97: 13354–13359.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Imai Y, Soda M, Hatakeyama S, Akagi T, Hashikawa T, Nakayama KI et al. CHIP is associated with Parkin, a gene responsible for familial Parkinson's disease, and enhances its ubiquitin ligase activity. Mol Cell 2002; 10: 55–67.

    Article  CAS  PubMed  Google Scholar 

  80. Nurnberger Jr J, Guroff JJ, Hamovit J, Berrettini W, Gershon E . A family study of rapid-cycling bipolar illness. J Affect Disord 1988; 15: 87–91.

    Article  PubMed  Google Scholar 

  81. Gershon ES, Hamovit J, Guroff JJ, Dibble E, Leckman JF, Sceery W et al. A family study of schizoaffective, bipolar-I, bipolar-II, unipolar, and normal control probands. Arch Gen Psychiatry 1982; 39: 1157–1167.

    Article  CAS  PubMed  Google Scholar 

  82. Maier W, Lichtermann D, Minges J, Hallmayer J, Heun R, Benkert O et al. Continuity and discontinuity of affective disorders and schizophrenia. Results of a controlled family study. Arch Gen Psychiatry 1993; 50: 871–883.

    Article  CAS  PubMed  Google Scholar 

  83. Kendler KS, Gruenberg AM, Tsuang MT . Psychiatric illness in first-degree relatives of schizophrenic and surgical control patients. A family study using DSM-III criteria. Arch Gen Psychiatry 1985; 42: 770–779.

    Article  CAS  PubMed  Google Scholar 

  84. Kendler KS, Gruenberg AM, Tsuang MT . A DSM-III family study of the nonschizophrenic psychotic disorders. Am J Psychiatry 1986; 143: 1098–1105.

    Article  CAS  PubMed  Google Scholar 

  85. Kendler KS, McGuire M, Gruenberg AM, O'Hare A, Spellman M, Walsh D . The Roscommon Family Study. I. Methods, diagnosis of probands, and risk of schizophrenia in relatives. Arch Gen Psychiatry 1993; 50: 527–540.

    Article  CAS  PubMed  Google Scholar 

  86. Kendler KS, McGuire M, Gruenberg AM, O'Hare A, Spellman M, Walsh D . The Roscommon Family Study. IV. Affective illness, anxiety disorders, and alcoholism in relatives. Arch Gen Psychiatry 1993; 50: 952–960.

    Article  CAS  PubMed  Google Scholar 

  87. Erlenmeyer-Kimling L, Adamo UH, Rock D, Roberts SA, Bassett AS, Squires-Wheeler E et al. The New York High-Risk Project. Prevalence and comorbidity of axis I disorders in offspring of schizophrenic parents at 25-year follow-up. Arch Gen Psychiatry 1997; 54: 1096–1102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Farmer AE, McGuffin P, Gottesman II . Twin concordance for DSM-III schizophrenia. Scrutinizing the validity of the definition. Arch Gen Psychiatry 1987; 44: 634–641.

    Article  CAS  PubMed  Google Scholar 

  89. Cardno AG, Rijsdijk FV, Sham PC, Murray RM, McGuffin P . A twin study of genetic relationships between psychotic symptoms. Am J Psychiatry 2002; 159: 539–545.

    Article  PubMed  Google Scholar 

  90. Badner JA, Gershon ES . Meta-analysis of whole-genome linkage scans of bipolar disorder and schizophrenia. Mol Psychiatry 2002; 7: 405–411.

    Article  CAS  PubMed  Google Scholar 

  91. Berrettini WH . Are schizophrenic and bipolar disorders related? A review of family and molecular studies. Biol Psychiatry 2000; 48: 531–538.

    Article  CAS  PubMed  Google Scholar 

  92. Segurado R, Detera-Wadleigh SD, Levinson DF, Lewis CM, Gill M, Nurnberger Jr JI et al. Genome scan meta-analysis of schizophrenia and bipolar disorder, part III: bipolar disorder. Am J Hum Genet 2003; 73: 49–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Hodgkinson CA, Goldman D, Jaeger J, Persaud S, Kane JM, Lipsky RH et al. Disrupted in schizophrenia 1 (DISC1): association with schizophrenia, schizoaffective disorder, and bipolar disorder. Am J Hum Genet 2004; 75: 862–872.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Tkachev D, Mimmack ML, Ryan MM, Wayland M, Freeman T, Jones PB et al. Oligodendrocyte dysfunction in schizophrenia and bipolar disorder. Lancet 2003; 362: 798–805.

    Article  CAS  PubMed  Google Scholar 

  95. Morley M, Molony CM, Weber TM, Devlin JL, Ewens KG, Spielman RS et al. Genetic analysis of genome-wide variation in human gene expression. Nature 2004; 430: 743–747.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Monks SA, Leonardson A, Zhu H, Cundiff P, Pietrusiak P, Edwards S et al. Genetic inheritance of gene expression in human cell lines. Am J Hum Genet 2004; 75: 1094–1105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Chesler EJ, Lu L, Shou S, Qu Y, Gu J, Wang J et al. Complex trait analysis of gene expression uncovers polygenic and pleiotropic networks that modulate nervous system function. Nat Genet 2005; 37: 233–242.

    Article  CAS  PubMed  Google Scholar 

  98. Bystrykh L, Weersing E, Dontje B, Sutton S, Pletcher MT, Wiltshire T et al. Uncovering regulatory pathways that affect hematopoietic stem cell function using ‘genetical genomics’. Nat Genet 2005; 37: 225–232.

    Article  CAS  PubMed  Google Scholar 

  99. Dick DM, Foroud T, Flury L, Bowman ES, Miller MJ, Rau NL et al. Genomewide linkage analyses of bipolar disorder: a new sample of 250 pedigrees from the National Institute of Mental Health Genetics Initiative. Am J Hum Genet 2003; 73: 107–114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Schildkraut JJ . The catecholamine hypothesis of affective disorders: a review of supporting evidence. Am J Psychiatry 1965; 122: 509–522.

    Article  CAS  PubMed  Google Scholar 

  101. Cohen RM, Campbell IC, Cohen MR, Torda T, Pickar D, Siever LJ et al. Presynaptic noradrenergic regulation during depression and antidepressant drug treatment. Psychiatry Res 1980; 3: 93–105.

    Article  CAS  PubMed  Google Scholar 

  102. Ogren SO, Fuxe K, Agnati L . The importance of brain serotonergic receptor mechanisms for the action of antidepressant drugs. Pharmacopsychiatry 1985; 18: 209–213.

    Article  CAS  PubMed  Google Scholar 

  103. Charney DS, Manji HK . Life stress, genes, and depression: multiple pathways lead to increased risk and new opportunities for intervention. Sci STKE 2004; 2004: re5.

    PubMed  Google Scholar 

  104. Tanoue A, Koshimizu TA, Tsujimoto G . Transgenic studies of alpha(1)-adrenergic receptor subtype function. Life Sci 2002; 71: 2207–2215.

    Article  CAS  PubMed  Google Scholar 

  105. Feng J, Sobell JL, Heston LL, Goldman D, Cook Jr E, Kranzler HR et al. Variants in the alpha2A AR adrenergic receptor gene in psychiatric patients. Am J Med Genet 1998; 81: 405–410.

    Article  CAS  PubMed  Google Scholar 

  106. Philipp M, Brede M, Hein L . Physiological significance of alpha(2)-adrenergic receptor subtype diversity: one receptor is not enough. Am J Physiol Regul Integr Comp Physiol 2002; 283: R287–295.

    Article  CAS  PubMed  Google Scholar 

  107. Ewald H, Degn B, Mors O, Kruse TA . Support for the possible locus on chromosome 4p16 for bipolar affective disorder. Mol Psychiatry 1998; 3: 442–448.

    Article  CAS  PubMed  Google Scholar 

  108. Khaitan L, Calabrese JR, Stockmeier CA . Effects of chronic treatment with valproate on serotonin-1A receptor binding and function. Psychopharmacology (Berlin) 1994; 113: 539–542.

    Article  CAS  Google Scholar 

  109. Frisch A, Postilnick D, Rockah R, Michaelovsky E, Postilnick S, Birman E et al. Association of unipolar major depressive disorder with genes of the serotonergic and dopaminergic pathways. Mol Psychiatry 1999; 4: 389–392.

    Article  CAS  PubMed  Google Scholar 

  110. Bellivier F, Leboyer M, Courtet P, Buresi C, Beaufils B, Samolyk D et al. Association between the tryptophan hydroxylase gene and manic-depressive illness. Arch Gen Psychiatry 1998; 55: 33–37.

    Article  CAS  PubMed  Google Scholar 

  111. Walther DJ, Bader M . A unique central tryptophan hydroxylase isoform. Biochem Pharmacol 2003; 66: 1673–1680.

    Article  CAS  PubMed  Google Scholar 

  112. Zill P, Baghai TC, Zwanzger P, Schule C, Eser D, Rupprecht R et al. SNP and haplotype analysis of a novel tryptophan hydroxylase isoform (TPH2) gene provide evidence for association with major depression. Mol Psychiatry 2004; 9: 1030–1036.

    Article  CAS  PubMed  Google Scholar 

  113. Vincent JB, Masellis M, Lawrence J, Choi V, Gurling HM, Parikh SV et al. Genetic association analysis of serotonin system genes in bipolar affective disorder. Am J Psychiatry 1999; 156: 136–138.

    Article  CAS  PubMed  Google Scholar 

  114. Tatarczynska E, Klodzinska A, Stachowicz K, Chojnacka-Wojcik E . Effect of combined administration of 5-HT1A or 5-HT1B/1D receptor antagonists and antidepressants in the forced swimming test. Eur J Pharmacol 2004; 487: 133–142.

    Article  CAS  PubMed  Google Scholar 

  115. Whale R, Clifford EM, Bhagwagar Z, Cowen PJ . Decreased sensitivity of 5-HT(1D) receptors in melancholic depression. Br J Psychiatry 2001; 178: 454–457.

    Article  CAS  PubMed  Google Scholar 

  116. Lin Z, Walther D, Yu XY, Drgon T, Uhl GR . The human serotonin receptor 2B: coding region polymorphisms and association with vulnerability to illegal drug abuse. Pharmacogenetics 2004; 14: 805–811.

    Article  CAS  PubMed  Google Scholar 

  117. Lerer B, Macciardi F, Segman RH, Adolfsson R, Blackwood D, Blairy S et al. Variability of 5-HT2C receptor cys23ser polymorphism among European populations and vulnerability to affective disorder. Mol Psychiatry 2001; 6: 579–585.

    Article  CAS  PubMed  Google Scholar 

  118. Niesler B, Flohr T, Nothen MM, Fischer C, Rietschel M, Franzek E et al. Association between the 5′ UTR variant C178T of the serotonin receptor gene HTR3A and bipolar affective disorder. Pharmacogenetics 2001; 11: 471–475.

    Article  CAS  PubMed  Google Scholar 

  119. Davies PA, Pistis M, Hanna MC, Peters JA, Lambert JJ, Hales TG et al. The 5-HT3B subunit is a major determinant of serotonin-receptor function. Nature 1999; 397: 359–363.

    Article  CAS  PubMed  Google Scholar 

  120. Ohtsuki T, Ishiguro H, Detera-Wadleigh SD, Toyota T, Shimizu H, Yamada K et al. Association between serotonin 4 receptor gene polymorphisms and bipolar disorder in Japanese case–control samples and the NIMH Genetics Initiative Bipolar Pedigrees. Mol Psychiatry 2002; 7: 954–961.

    Article  CAS  PubMed  Google Scholar 

  121. Anguelova M, Benkelfat C, Turecki G . A systematic review of association studies investigating genes coding for serotonin receptors and the serotonin transporter: I. Affective disorders. Mol Psychiatry 2003; 8: 574–591.

    Article  CAS  PubMed  Google Scholar 

  122. Kirov G, Murphy KC, Arranz MJ, Jones I, McCandles F, Kunugi H et al. Low activity allele of catechol-O-methyltransferase gene associated with rapid cycling bipolar disorder. Mol Psychiatry 1998; 3: 342–345.

    Article  CAS  PubMed  Google Scholar 

  123. Kirov G, Jones I, McCandless F, Craddock N, Owen MJ . Family-based association studies of bipolar disorder with candidate genes involved in dopamine neurotransmission: DBH, DAT1, COMT, DRD2, DRD3 and DRD5. Mol Psychiatry 1999; 4: 558–565.

    Article  CAS  PubMed  Google Scholar 

  124. Ni X, Trakalo JM, Mundo E, Macciardi FM, Parikh S, Lee L et al. Linkage disequilibrium between dopamine D1 receptor gene (DRD1) and bipolar disorder. Biol Psychiatry 2002; 52: 1144–1150.

    Article  CAS  PubMed  Google Scholar 

  125. Massat I, Souery D, Del-Favero J, Van Gestel S, Serretti A, Macciardi F et al. Positive association of dopamine D2 receptor polymorphism with bipolar affective disorder in a European Multicenter Association Study of affective disorders. Am J Med Genet 2002; 114: 177–185.

    Article  PubMed  Google Scholar 

  126. Elvidge G, Jones I, McCandless F, Asherson P, Owen MJ, Craddock N . Allelic variation of a BalI polymorphism in the DRD3 gene does not influence susceptibility to bipolar disorder: results of analysis and meta-analysis. Am J Med Genet 2001; 105: 307–311.

    Article  CAS  PubMed  Google Scholar 

  127. Muglia P, Petronis A, Mundo E, Lander S, Cate T, Kennedy JL . Dopamine D4 receptor and tyrosine hydroxylase genes in bipolar disorder: evidence for a role of DRD4. Mol Psychiatry 2002; 7: 860–866.

    Article  CAS  PubMed  Google Scholar 

  128. Iwayama-Shigeno Y, Yamada K, Toyota T, Shimizu H, Hattori E, Yoshitsugu K et al. Distribution of haplotypes derived from three common variants of the NR4A2 gene in Japanese patients with schizophrenia. Am J Med Genet 2003; 118B: 20–24.

    Article  PubMed  Google Scholar 

  129. Jahnes E, Muller DJ, Schulze TG, Windemuth C, Cichon S, Ohlraun S et al. Association study between two variants in the DOPA decarboxylase gene in bipolar and unipolar affective disorder. Am J Med Genet 2002; 114: 519–522.

    Article  PubMed  Google Scholar 

  130. Preisig M, Bellivier F, Fenton BT, Baud P, Berney A, Courtet P et al. Association between bipolar disorder and monoamine oxidase A gene polymorphisms: results of a multicenter study. Am J Psychiatry 2000; 157: 948–955.

    Article  CAS  PubMed  Google Scholar 

  131. Sands SA, Guerra V, Morilak DA . Changes in tyrosine hydroxylase mRNA expression in the rat locus coeruleus following acute or chronic treatment with valproic acid. Neuropsychopharmacology 2000; 22: 27–35.

    Article  CAS  PubMed  Google Scholar 

  132. Furlong RA, Rubinsztein JS, Ho L, Walsh C, Coleman TA, Muir WJ et al. Analysis and metaanalysis of two polymorphisms within the tyrosine hydroxylase gene in bipolar and unipolar affective disorders. Am J Med Genet 1999; 88: 88–94.

    Article  CAS  PubMed  Google Scholar 

  133. Massat I, Souery D, Del-Favero J, Nothen M, Blackwood D, Muir W et al. Association between COMT (Val(158)Met) functional polymorphism and early onset in patients with major depressive disorder in a European multicenter genetic association study. Mol Psychiatry 2004: (Epub ahead of print).

  134. Ralph-Williams RJ, Paulus MP, Zhuang X, Hen R, Geyer MA . Valproate attenuates hyperactive and perseverative behaviors in mutant mice with a dysregulated dopamine system. Biol Psychiatry 2003; 53: 352–359.

    Article  CAS  PubMed  Google Scholar 

  135. Greenwood TA, Alexander M, Keck PE, McElroy S, Sadovnick AD, Remick RA et al. Evidence for linkage disequilibrium between the dopamine transporter and bipolar disorder. Am J Med Genet 2001; 105: 145–151.

    Article  CAS  PubMed  Google Scholar 

  136. Cordeiro ML, Gundersen CB, Umbach JA . Lithium ions modulate the expression of VMAT2 in rat brain. Brain Res 2002; 953: 189–194.

    Article  CAS  PubMed  Google Scholar 

  137. Picciotto MR . Common aspects of the action of nicotine and other drugs of abuse. Drug Alcohol Depend 1998; 51: 165–172.

    Article  CAS  PubMed  Google Scholar 

  138. Graham AJ, Martin-Ruiz CM, Teaktong T, Ray MA, Court JA . Human brain nicotinic receptors, their distribution and participation in neuropsychiatric disorders. Curr Drug Targets CNS Neuro Disord 2002; 1: 387–397.

    Article  CAS  Google Scholar 

  139. Wang JC, Hinrichs AL, Stock H, Budde J, Allen R, Bertelsen S et al. Evidence of common and specific genetic effects: association of the muscarinic acetylcholine receptor M2 (CHRM2) gene with alcohol dependence and major depressive syndrome. Hum Mol Genet 2004; 13: 1903–1911.

    Article  CAS  PubMed  Google Scholar 

  140. Horiuchi Y, Nakayama J, Ishiguro H, Ohtsuki T, Detera-Wadleigh SD, Toyota T et al. Possible association between a haplotype of the GABA-A receptor alpha 1 subunit gene (GABRA1) and mood disorders. Biol Psychiatry 2004; 55: 40–45.

    Article  CAS  PubMed  Google Scholar 

  141. Sieghart W . Unraveling the function of GABA(A) receptor subtypes. Trends Pharmacol Sci 2000; 21: 411–413.

    Article  CAS  PubMed  Google Scholar 

  142. Sieghart W, Sperk G . Subunit composition, distribution and function of GABA(A) receptor subtypes. Curr Top Med Chem 2002; 2: 795–816.

    Article  CAS  PubMed  Google Scholar 

  143. Edenberg HJ, Dick DM, Xuei X, Tian H, Almasy L, Bauer LO et al. Variations in GABRA2, encoding the alpha 2 subunit of the GABA(A) receptor, are associated with alcohol dependence and with brain oscillations. Am J Hum Genet 2004; 74:705–714.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Mombereau C, Kaupmann K, Froestl W, Sansig G, van der PH, Cryan JF . Genetic and pharmacological evidence of a role for GABA(B) receptors in the modulation of anxiety- and antidepressant-like behavior. Neuropsychopharmacology 2004; 29: 1050–1062.

    Article  CAS  PubMed  Google Scholar 

  145. Borden LA . GABA transporter heterogeneity: pharmacology and cellular localization. Neurochem Int 1996; 29: 335–356.

    Article  CAS  PubMed  Google Scholar 

  146. Volk D, Austin M, Pierri J, Sampson A, Lewis D . GABA transporter-1 mRNA in the prefrontal cortex in schizophrenia: decreased expression in a subset of neurons. Am J Psychiatry 2001; 158: 256–265.

    Article  CAS  PubMed  Google Scholar 

  147. Ohnuma T, Augood SJ, Arai H, McKenna PJ, Emson PC . Measurement of GABAergic parameters in the prefrontal cortex in schizophrenia: focus on GABA content, GABA(A) receptor alpha-1 subunit messenger RNA and human GABA transporter-1 (HGAT-1) messenger RNA expression. Neuroscience 1999; 93: 441–448.

    Article  CAS  PubMed  Google Scholar 

  148. Gasnier B . The SLC32 transporter, a key protein for the synaptic release of inhibitory amino acids. Pflugers Arch 2004; 447: 756–759.

    Article  CAS  PubMed  Google Scholar 

  149. Heckers S, Stone D, Walsh J, Shick J, Koul P, Benes FM . Differential hippocampal expression of glutamic acid decarboxylase 65 and 67 messenger RNA in bipolar disorder and schizophrenia. Arch Gen Psychiatry 2002; 59: 521–529.

    Article  CAS  PubMed  Google Scholar 

  150. Guidotti A, Auta J, Davis JM, Giorgi-Gerevini V, Dwivedi Y, Grayson DR et al. Decrease in reelin and glutamic acid decarboxylase67 (GAD67) expression in schizophrenia and bipolar disorder: a postmortem brain study. Arch Gen Psychiatry 2000; 57: 1061–1069.

    Article  CAS  PubMed  Google Scholar 

  151. Berrettini WH, Nurnberger JI, Post RM, Gershon ES . Platelet 3H-imipramine binding in euthymic bipolar patients. Psychiatry Res 1982; 7: 215–219.

    Article  CAS  PubMed  Google Scholar 

  152. Zhou L, Chillag KL, Nigro MA . Hyperekplexia: a treatable neurogenetic disease. Brain Dev 2002; 24: 669–674.

    Article  PubMed  Google Scholar 

  153. Du J, Gray NA, Falke CA, Chen W, Yuan P, Szabo ST et al. Modulation of synaptic plasticity by antimanic agents: the role of AMPA glutamate receptor subunit 1 synaptic expression. J Neurosci 2004; 24: 6578–6589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Kamboj RK, Schoepp DD, Nutt S, Shekter L, Korczak B, True RA et al. Molecular cloning, expression, and pharmacological characterization of humEAA1, a human kainate receptor subunit. J Neurochem 1994; 62: 1–9.

    Article  CAS  PubMed  Google Scholar 

  155. Mundo E, Tharmalingham S, Neves-Pereira M, Dalton EJ, Macciardi F, Parikh SV et al. Evidence that the N-methyl-D-aspartate subunit 1 receptor gene (GRIN1) confers susceptibility to bipolar disorder. Mol Psychiatry 2003; 8: 241–245.

    Article  CAS  PubMed  Google Scholar 

  156. Itokawa M, Yamada K, Iwayama-Shigeno Y, Ishitsuka Y, Detera-Wadleigh S, Yoshikawa T . Genetic analysis of a functional GRIN2A promoter (GT)n repeat in bipolar disorder pedigrees in humans. Neurosci Lett 2003; 345: 53–56.

    Article  CAS  PubMed  Google Scholar 

  157. Miyamoto Y, Yamada K, Nagai T, Mori H, Mishina M, Furukawa H et al. Behavioural adaptations to addictive drugs in mice lacking the NMDA receptor epsilon1 subunit. Eur J Neurosci 2004; 19: 151–158.

    Article  PubMed  Google Scholar 

  158. Chaki S, Yoshikawa R, Hirota S, Shimazaki T, Maeda M, Kawashima N et al. MGS0039: a potent and selective group II metabotropic glutamate receptor antagonist with antidepressant-like activity. Neuropharmacology 2004; 46: 457–467.

    Article  CAS  PubMed  Google Scholar 

  159. Wieronska JM, Branski P, Szewczyk B, Palucha A, Papp M, Gruca P et al. Changes in the expression of metabotropic glutamate receptor 5 (mGluR5) in the rat hippocampus in an animal model of depression. Pol J Pharmacol 2001; 53: 659–662.

    CAS  PubMed  Google Scholar 

  160. Cryan JF, Kelly PH, Neijt HC, Sansig G, Flor PJ, van Der Putten H . Antidepressant and anxiolytic-like effects in mice lacking the group III metabotropic glutamate receptor mGluR7. Eur J Neurosci 2003; 17: 2409–2417.

    Article  PubMed  Google Scholar 

  161. O'Shea RD . Roles and regulation of glutamate transporters in the central nervous system. Clin Exp Pharmacol Physiol 2002; 29: 1018–1023.

    Article  CAS  PubMed  Google Scholar 

  162. Smith RE, Haroutunian V, Davis KL, Meador-Woodruff JH . Expression of excitatory amino acid transporter transcripts in the thalamus of subjects with schizophrenia. Am J Psychiatry 2001; 158: 1393–1399.

    Article  CAS  PubMed  Google Scholar 

  163. McCullumsmith RE, Meador-Woodruff JH . Striatal excitatory amino acid transporter transcript expression in schizophrenia, bipolar disorder, and major depressive disorder. Neuropsychopharmacology 2002; 26: 368–375.

    Article  CAS  PubMed  Google Scholar 

  164. Chen L, Muhlhauser M, Yang CR . Glycine tranporter-1 blockade potentiates NMDA-mediated responses in rat prefrontal cortical neurons in vitro and in vivo. J Neurophysiol 2003; 89: 691–703.

    Article  CAS  PubMed  Google Scholar 

  165. Hashimoto K, Fukushima T, Shimizu E, Komatsu N, Watanabe H, Shinoda N et al. Decreased serum levels of D-serine in patients with schizophrenia: evidence in support of the N-methyl-D-aspartate receptor hypofunction hypothesis of schizophrenia. Arch Gen Psychiatry 2003; 60: 572–576.

    Article  CAS  PubMed  Google Scholar 

  166. Kim SJ, Young LJ, Gonen D, Veenstra-VanderWeele J, Courchesne R, Courchesne E et al. Transmission disequilibrium testing of arginine vasopressin receptor 1A (AVPR1A) polymorphisms in autism. Mol Psychiatry 2002; 7: 503–507.

    Article  CAS  PubMed  Google Scholar 

  167. Douglass AB . Narcolepsy: differential diagnosis or etiology in some cases of bipolar disorder and schizophrenia? CNS Spectr 2003; 8: 120–126.

    Article  PubMed  Google Scholar 

  168. Caberlotto L, Hurd YL . Reduced neuropeptide Y mRNA expression in the prefrontal cortex of subjects with bipolar disorder. Neuroreport 1999; 10: 1747–1750.

    Article  CAS  PubMed  Google Scholar 

  169. Kinkead B, Binder EB, Nemeroff CB . Does neurotensin mediate the effects of antipsychotic drugs? Biol Psychiatry 1999; 46: 340–351.

    Article  CAS  PubMed  Google Scholar 

  170. Ribeiro SJ, De Lima TC . Naloxone-induced changes in tachykinin NK3 receptor modulation of experimental anxiety in mice. Neurosci Lett 1998; 258: 155–158.

    Article  CAS  PubMed  Google Scholar 

  171. Carlezon Jr WA, Thome J, Olson VG, Lane-Ladd SB, Brodkin ES, Hiroi N et al. Regulation of cocaine reward by CREB. Science 1998; 282: 2272–2275.

    Article  CAS  PubMed  Google Scholar 

  172. Deckert J, Nothen MM, Albus M, Franzek E, Rietschel M, Ren H et al. Adenosine A1 receptor and bipolar affective disorder: systematic screening of the gene and association studies. Am J Med Genet 1998; 81: 18–23.

    Article  CAS  PubMed  Google Scholar 

  173. DeteraWadleigh SD, Badner JA, Goldin LR, Berrettini WH, Sanders AR, Rollins DY et al. Affected-sib-pair analyses reveal support of prior evidence for a susceptibility locus for bipolar disorder, on 21q. Am J Hum Genet 1996; 58: 1279.

    CAS  Google Scholar 

  174. Muller M, Holsboer F, Keck ME . Genetic modification of corticosteroid receptor signalling: novel insights into pathophysiology and treatment strategies of human affective disorders. Neuropeptides 2002; 36: 117–131.

    Article  CAS  PubMed  Google Scholar 

  175. Wang JF, Bown CD, Chen B, Young LT . Identification of mood stabilizer-regulated genes by differential-display PCR. Int J Neuropsychopharmacol 2001; 4: 65–74.

    Article  CAS  PubMed  Google Scholar 

  176. Futamura T, Toyooka K, Iritani S, Niizato K, Nakamura R, Tsuchiya K et al. Abnormal expression of epidermal growth factor and its receptor in the forebrain and serum of schizophrenic patients. Mol Psychiatry 2002; 7: 673–682.

    Article  CAS  PubMed  Google Scholar 

  177. Bezchlibnyk YB, Wang JF, McQueen GM, Young LT . Gene expression differences in bipolar disorder revealed by cDNA array analysis of post-mortem frontal cortex. J Neurochem 2001; 79: 826–834.

    Article  CAS  PubMed  Google Scholar 

  178. Faivre L, Gosset P, Cormier-Daire V, Odent S, Amiel J, Giurgea I et al. Overgrowth and trisomy 15q26.1-qter including the IGF1 receptor gene: report of two families and review of the literature. Eur J Hum Genet 2002; 10: 699–706.

    Article  CAS  PubMed  Google Scholar 

  179. Zubenko GS, Maher B, Hughes III HB, Zubenko WN, Stiffler JS, Kaplan BB et al. Genome-wide linkage survey for genetic loci that influence the development of depressive disorders in families with recurrent, early-onset, major depression. Am J Med Genet 2003; 123B: 1–18.

    Article  PubMed  Google Scholar 

  180. Toyota T, Yamada K, Saito K, Detera-Wadleigh SD, Yoshikawa T . Association analysis of adenylate cyclase type 9 gene using pedigree disequilibrium test in bipolar disorder. Mol Psychiatry 2002; 7: 450–452.

    Article  CAS  PubMed  Google Scholar 

  181. Vuoristo JT, Berrettini WH, Overhauser J, Prockop DJ, Ferraro TN, Ala-Kokko L . Sequence and genomic organization of the human G-protein Golfalpha gene (GNAL) on chromosome 18p11, a susceptibility region for bipolar disorder and schizophrenia. Mol Psychiatry 2000; 5: 495–501.

    Article  CAS  PubMed  Google Scholar 

  182. Ye Y, Conti M, Houslay MD, Farooqui SM, Chen M, O'Donnell JM . Noradrenergic activity differentially regulates the expression of rolipram-sensitive, high-affinity cyclic AMP phosphodiesterase (PDE4) in rat brain. J Neurochem 1997; 69: 2397–2404.

    Article  CAS  PubMed  Google Scholar 

  183. Suda S, Nibuya M, Ishiguro T, Suda H . Transcriptional and translational regulation of phosphodiesterase type IV isozymes in rat brain by electroconvulsive seizure and antidepressant drug treatment. J Neurochem 1998; 71: 1554–1563.

    Article  CAS  PubMed  Google Scholar 

  184. Zhang HT, Huang Y, Jin SL, Frith SA, Suvarna N, Conti M et al. Antidepressant-like profile and reduced sensitivity to rolipram in mice deficient in the PDE4D phosphodiesterase enzyme. Neuropsychopharmacology 2002; 27: 587–595.

    CAS  PubMed  Google Scholar 

  185. Chang A, Li PP, Warsh JJ . cAMP-Dependent protein kinase (PKA) subunit mRNA levels in postmortem brain from patients with bipolar affective disorder (BD). Brain Res Mol Brain Res 2003; 116: 27–37.

    Article  CAS  PubMed  Google Scholar 

  186. Chang A, Li PP, Warsh JJ . Altered cAMP-dependent protein kinase subunit immunolabeling in post-mortem brain from patients with bipolar affective disorder. J Neurochem 2003; 84: 781–791.

    Article  CAS  PubMed  Google Scholar 

  187. Garzon J, Rodriguez-Munoz M, Lopez-Fando A, Garcia-Espana A, Sanchez-Blazquez P . RGSZ1 and GAIP regulate mu- but not delta-opioid receptors in mouse CNS: role in tachyphylaxis and acute tolerance. Neuropsychopharmacology 2004; 29: 1091–1104.

    Article  CAS  PubMed  Google Scholar 

  188. Mirnics K, Middleton FA, Stanwood GD, Lewis DA, Levitt P . Disease-specific changes in regulator of G-protein signaling 4 (RGS4) expression in schizophrenia. Mol Psychiatry 2001; 6: 293–301.

    Article  CAS  PubMed  Google Scholar 

  189. Smith FD, Oxford GS, Milgram SL . Association of the D2 dopamine receptor third cytoplasmic loop with spinophilin, a protein phosphatase-1-interacting protein. J Biol Chem 1999; 274: 19894–19900.

    Article  CAS  PubMed  Google Scholar 

  190. Frankland PW, O'Brien C, Ohno M, Kirkwood A, Silva AJ . Alpha-CaMKII-dependent plasticity in the cortex is required for permanent memory. Nature 2001; 411: 309–313.

    Article  CAS  PubMed  Google Scholar 

  191. Chandy KG, Fantino E, Wittekindt O, Kalman K, Tong LL, Ho TH et al. Isolation of a novel potassium channel gene hSKCa3 containing a polymorphic CAG repeat: a candidate for schizophrenia and bipolar disorder? Mol Psychiatry 1998; 3: 32–37.

    Article  CAS  PubMed  Google Scholar 

  192. Coyle JT, Duman RS . Finding the intracellular signaling pathways affected by mood disorder treatments. Neuron 2003; 38: 157–160.

    Article  CAS  PubMed  Google Scholar 

  193. Manji HK, Lenox RH . Ziskind–Somerfeld Research Award. Protein kinase C signaling in the brain: molecular transduction of mood stabilization in the treatment of manic-depressive illness. Biol Psychiatry 1999; 46: 1328–1351.

    Article  CAS  PubMed  Google Scholar 

  194. Jacobsen NJ, Franks EK, Owen MJ, Craddock NJ . Mutational analysis of phospholipase A2A: a positional candidate susceptibility gene for bipolar disorder. Mol Psychiatry 1999; 4: 274–279.

    Article  CAS  PubMed  Google Scholar 

  195. Papadimitriou GN, Dikeos DG, Souery D, Del Favero J, Massat I, Avramopoulos D et al. Genetic association between the phospholipase A2 gene and unipolar affective disorder: a multicentre case–control study. Psychiatr Genet 2003; 13: 211–220.

    Article  PubMed  Google Scholar 

  196. Turecki G, Grof P, Cavazzoni P, Duffy A, Grof E, Ahrens B et al. Evidence for a role of phospholipase C-gamma1 in the pathogenesis of bipolar disorder. Mol Psychiatry 1998; 3: 534–538.

    Article  CAS  PubMed  Google Scholar 

  197. Zill P, Baghai TC, Zwanzger P, Schule C, Minov C, Riedel M et al. Evidence for an association between a G-protein beta3-gene variant with depression and response to antidepressant treatment. Neuroreport 2000; 11: 1893–1897.

    Article  CAS  PubMed  Google Scholar 

  198. Ford CE, Skiba NP, Bae H, Daaka Y, Reuveny E, Shekter LR et al. Molecular basis for interactions of G protein betagamma subunits with effectors. Science 1998; 280: 1271–1274.

    Article  CAS  PubMed  Google Scholar 

  199. Manji HK, Chen G . PKC, MAP kinases and the bcl-2 family of proteins as long-term targets for mood stabilizers. Mol Psychiatry 2002; 7 (Suppl 1): S46–S56.

    Article  CAS  PubMed  Google Scholar 

  200. Toyota T, Watanabe A, Shibuya H, Nankai M, Hattori E, Yamada K et al. Association study on the DUSP6 gene, an affective disorder candidate gene on 12q23, performed by using fluorescence resonance energy transfer-based melting curve analysis on the LightCycler. Mol Psychiatry 2000; 5: 489–494.

    Article  CAS  PubMed  Google Scholar 

  201. Mathews R, Li PP, Young LT, Kish SJ, Warsh JJ . Increased G alpha q/11 immunoreactivity in postmortem occipital cortex from patients with bipolar affective disorder. Biol Psychiatry 1997; 41: 649–656.

    Article  CAS  PubMed  Google Scholar 

  202. Yoshikawa T, Kikuchi M, Saito K, Watanabe A, Yamada K, Shibuya H et al. Evidence for association of the myo-inositol monophosphatase 2 (IMPA2) gene with schizophrenia in Japanese samples. Mol Psychiatry 2001; 6: 202–210.

    Article  CAS  PubMed  Google Scholar 

  203. Stopkova P, Saito T, Fann CS, Papolos DF, Vevera J, Paclt I et al. Polymorphism screening of PIP5K2A: a candidate gene for chromosome 10p-linked psychiatric disorders. Am J Med Genet 2003; 123B: 50–58.

    Article  PubMed  Google Scholar 

  204. Saito T, Stopkova P, Diaz L, Papolos DF, Boussemart L, Lachman HM . Polymorphism screening of PIK4CA: possible candidate gene for chromosome 22q11-linked psychiatric disorders. Am J Med Genet 2003; 116B: 77–83.

    Article  PubMed  Google Scholar 

  205. Benedetti F, Serretti A, Colombo C, Barbini B, Lorenzi C, Campori E et al. Influence of CLOCK gene polymorphism on circadian mood fluctuation and illness recurrence in bipolar depression. Am J Med Genet 2003; 123B: 23–26.

    Article  PubMed  Google Scholar 

  206. Taheri S, Mignot E . The genetics of sleep disorders. Lancet Neurol 2002; 1: 242.

    Article  CAS  PubMed  Google Scholar 

  207. Nurnberger Jr JI, Adkins S, Lahiri DK, Mayeda A, Hu K, Lewy A et al. Melatonin suppression by light in euthymic bipolar and unipolar patients. Arch Gen Psychiatry 2000; 57: 572–579.

    Article  CAS  PubMed  Google Scholar 

  208. Partonen T, Lonnqvist J . Seasonal affective disorder. Lancet 1998; 352: 1369–1374.

    Article  CAS  PubMed  Google Scholar 

  209. Liu C, Weaver DR, Jin X, Shearman LP, Pieschl RL, Gribkoff VK et al. Molecular dissection of two distinct actions of melatonin on the suprachiasmatic circadian clock. Neuron 1997; 19: 91–102.

    Article  CAS  PubMed  Google Scholar 

  210. Nyegaard M, Borglum AD, Bruun TG, Collier DA, Russ C, Mors O et al. Novel polymorphisms in the somatostatin receptor 5 (SSTR5) gene associated with bipolar affective disorder. Mol Psychiatry 2002; 7: 745–754.

    Article  CAS  PubMed  Google Scholar 

  211. Jin X, von Gall C, Pieschl RL, Gribkoff VK, Stehle JH, Reppert SM et al. Targeted disruption of the mouse Mel(1b) melatonin receptor. Mol Cell Biol 2003; 23: 1054–1060.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Hannibal J . Neurotransmitters of the retino-hypothalamic tract. Cell Tissue Res 2002; 309: 73–88.

    Article  CAS  PubMed  Google Scholar 

  213. Ishiguro H, Ohtsuki T, Okubo Y, Kurumaji A, Arinami T . Association analysis of the pituitary adenyl cyclase activating peptide gene (PACAP) on chromosome 18p11 with schizophrenia and bipolar disorders. J Neural Transm 2001; 108: 849–854.

    Article  CAS  PubMed  Google Scholar 

  214. Johansson C, Willeit M, Smedh C, Ekholm J, Paunio T, Kieseppa T et al. Circadian clock-related polymorphisms in seasonal affective disorder and their relevance to diurnal preference. Neuropsychopharmacology 2003; 28: 734–739.

    Article  CAS  PubMed  Google Scholar 

  215. Bonifati V, Rizzu P, van Baren MJ, Schaap O, Breedveld GJ, Krieger E et al. Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism. Science 2003; 299: 256–259.

    Article  CAS  PubMed  Google Scholar 

  216. Millar JK, Wilson-Annan JC, Anderson S, Christie S, Taylor MS, Semple CA et al. Disruption of two novel genes by a translocation co-segregating with schizophrenia. Hum Mol Genet 2000; 9: 1415–1423.

    Article  CAS  PubMed  Google Scholar 

  217. Ozeki Y, Tomoda T, Kleiderlein J, Kamiya A, Bord L, Fujii K et al. Disrupted-in-schizophrenia-1 (DISC-1): mutant truncation prevents binding to NudE-like (NUDEL) and inhibits neurite outgrowth. Proc Natl Acad Sci USA 2003; 100: 289–294.

    Article  CAS  PubMed  Google Scholar 

  218. Costa E, Chen Y, Davis J, Dong E, Noh JS, Tremolizzo L et al. REELIN and schizophrenia: a disease at the interface of the genome and the epigenome. Mol Intervent 2002; 2: 47–57.

    Article  CAS  Google Scholar 

  219. Tokuoka SM, Ishii S, Kawamura N, Satoh M, Shimada A, Sasaki S et al. Involvement of platelet-activating factor and LIS1 in neuronal migration. Eur J Neurosci 2003; 18: 563–570.

    Article  PubMed  Google Scholar 

  220. Sakurai K, Migita O, Toru M, Arinami T . An association between a missense polymorphism in the close homologue of L1 (CHL1, CALL) gene and schizophrenia. Mol Psychiatry 2002; 7: 412–415.

    Article  CAS  PubMed  Google Scholar 

  221. Poltorak M, Wright R, Hemperly JJ, Torrey EF, Issa F, Wyatt RJ et al. Monozygotic twins discordant for schizophrenia are discordant for N-CAM and L1 in CSF. Brain Res 1997; 751: 152–154.

    Article  CAS  PubMed  Google Scholar 

  222. Kurumaji A, Nomoto H, Okano T, Toru M . An association study between polymorphism of L1CAM gene and schizophrenia in a Japanese sample. Am J Med Genet 2001; 105: 99–104.

    Article  CAS  PubMed  Google Scholar 

  223. Arai M, Itokawa M, Yamada K, Toyota T, Arai M, Haga S et al. Association of neural cell adhesion molecule 1 gene polymorphisms with bipolar affective disorder in Japanese individuals. Biol Psychiatry 2004; 55: 804–810.

    Article  CAS  PubMed  Google Scholar 

  224. Liu H, Heath SC, Sobin C, Roos JL, Galke BL, Blundell ML et al. Genetic variation at the 22q11 PRODH2/DGCR6 locus presents an unusual pattern and increases susceptibility to schizophrenia. Proc Natl Acad Sci USA 2002; 99: 3717–3722.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E Hattori.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hattori, E., Liu, C., Zhu, H. et al. Genetic tests of biologic systems in affective disorders. Mol Psychiatry 10, 719–740 (2005). https://doi.org/10.1038/sj.mp.4001695

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4001695

Keywords

This article is cited by

Search

Quick links