Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Mice with neuron-specific accumulation of mitochondrial DNA mutations show mood disorder-like phenotypes

Abstract

There is no established genetic model of bipolar disorder or major depression, which hampers research of these mood disorders. Although mood disorders are multifactorial diseases, they are sometimes manifested by one of pleiotropic effects of a single major gene defect. We focused on chronic progressive external ophthalmoplegia (CPEO), patients with which sometimes have comorbid mood disorders. Chronic progressive external ophthalmoplegia is a mitochondrial disease, which is accompanied by accumulation of mitochondrial DNA (mtDNA) deletions caused by mutations in nuclear-encoded genes such as POLG (mtDNA polymerase). We generated transgenic mice, in which mutant POLG was expressed in a neuron-specific manner. The mice showed forebrain-specific defects of mtDNA and had altered monoaminergic functions in the brain. The mutant mice exhibited characteristic behavioral phenotypes, a distorted day–night rhythm and a robust periodic activity pattern associated with estrous cycle. These abnormal behaviors resembling mood disorder were worsened by tricyclic antidepressant treatment and improved by lithium, a mood stabilizer. We also observed antidepressant-induced mania-like behavior and long-lasting irregularity of activity in some mutant animals. Our data suggest that accumulation of mtDNA defects in brain caused mood disorder-like mental symptoms with similar treatment responses to bipolar disorder. These findings are compatible with mitochondrial dysfunction hypothesis of bipolar disorder.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition. Text Revision (DSM-IV-TR), 2000.

  2. Merikangas KR, Low NC . The epidemiology of mood disorders. Curr Psychiatry Rep 2004; 6: 411–421.

    Article  Google Scholar 

  3. Goodwin FK, Jamison KR . Manic-Depressive Illness. Oxford University Press: New York, 1990.

    Google Scholar 

  4. Kato T, Kato N . Mitochondrial dysfunction in bipolar disorder. Bipolar Disord 2000; 2: 180–190.

    Article  CAS  Google Scholar 

  5. Kato T, Takahashi S, Shioiri T, Inubushi T . Alterations in brain phosphorous metabolism in bipolar disorder detected by in vivo31P and 7Li magnetic resonance spectroscopy. J Affect Disord 1993; 27: 53–59.

    Article  CAS  Google Scholar 

  6. Kato T, Kunugi H, Nanko S, Kato N . Mitochondrial DNA polymorphisms in bipolar disorder. J Affect Disord 2001; 62: 151–164.

    Article  CAS  Google Scholar 

  7. Munakata K, Tanaka M, Mori K, Washizuka S, Yoneda M, Tajima O et al. Mitochondrial DNA 3644T → C mutation associated with bipolar disorder. Genomics 2004; 84: 1041–1050.

    Article  CAS  Google Scholar 

  8. Munakata K, Iwamoto K, Bundo M, Kato T . Mitochondrial DNA 3243A>G mutation and increased expression of LARS2 gene in the brains of patients with bipolar disorder and schizophrenia. Biol Psychiatry 2005; 57: 525–532.

    Article  CAS  Google Scholar 

  9. Washizuka S, Iwamoto K, Kazuno A, Kakiuchi C, Mori K, Kametani M et al. Association of mitochondrial complex I subunit gene NDUFV2 at 18p11 with bipolar disorder in Japanese and the NIMH pedigrees. Biol Psychiatry 2004; 56: 483–489.

    Article  CAS  Google Scholar 

  10. Konradi C, Eaton M, MacDonald ML, Walsh J, Benes FM, Heckers S et al. Molecular evidence for mitochondrial dysfunction in bipolar disorder. Arch Gen Psychiatry 2004; 61: 300–308.

    Article  CAS  Google Scholar 

  11. Iwamoto K, Bundo M, Kato T . Altered expression of mitochondria-related genes in postmortem brains of patients with bipolar disorder or schizophrenia, as revealed by large-scale DNA microarray analysis. Hum Mol Genet 2005; 14: 241–253.

    Article  CAS  Google Scholar 

  12. Krishnan KR . Psychiatric and medical comorbidities of bipolar disorder. Psychosom Med 2005; 67: 1–8.

    Article  Google Scholar 

  13. Siciliano G, Tessa A, Petrini S, Mancuso M, Bruno C, Grieco GS et al. Autosomal dominant external ophthalmoplegia and bipolar affective disorder associated with a mutation in the ANT1 gene. Neuromuscul Disord 2003; 13: 162–165.

    Article  CAS  Google Scholar 

  14. Deschauer M, Hudson G, Muller T, Taylor RW, Chinnery PF, Zierz S et al. A novel ANT1 gene mutation with probable germline mosaicism in autosomal dominant progressive external ophthalmoplegia. Neuromuscul Disord 2005; 15: 311–315.

    Article  Google Scholar 

  15. Spelbrink JN, Li FY, Tiranti V, Nikali K, Yuan Q-P, Tariq M et al. Human mitochondrial DNA deletions associated with mutations in the gene encoding Twinkle, a phage T7 gene 4-like protein localized in mitochondria. Nat Genet 2001; 28: 223–231.

    Article  CAS  Google Scholar 

  16. Van Goethem G, Dermaut B, Löfgren A, Martin JJ, Van Broeckhoven C . Mutation of POLG is associated with progressive external ophthalmoplegia characterized by mtDNA deletions. Nat Genet 2001; 28: 211–212.

    Article  CAS  Google Scholar 

  17. Mancuso M, Filosto M, Bellan M, Liguori R, Montagna P, Baruzzi A et al. POLG mutations causing ophthalmoplegia, sensorimotor polyneuropathy, ataxia, and deafness. Neurology 2004; 62: 316–318.

    Article  CAS  Google Scholar 

  18. Luoma P, Melberg A, Rinne JO, Kaukonen JA, Nupponen NN, Chalmers RM et al. Parkinsonism, premature menopause, and mitochondrial DNA polymerase γ mutations: clinical and molecular genetic study. Lancet 2004; 364: 875–882.

    Article  CAS  Google Scholar 

  19. Van Goethem G, Löfgren A, Dermaut B, Ceuterick C, Martin J-J, Van Broeckhoven C et al. Digenic progressive external ophthalmoplegia in a sporadic patient: Recessive mutations in POLG and C10orf2/Twinkle. Hum Mutat 2003; 22: 175–176.

    Article  CAS  Google Scholar 

  20. Suomalainen A, Majander A, Haltia M, Somer H, Lonnqvist J, Savontaus ML et al. Multiple deletions of mitochondrial DNA in several tissues of a patient with severe retarded depression and familial progressive external ophthalmoplegia. J Clin Invest 1992; 90: 61–66.

    Article  CAS  Google Scholar 

  21. Van Goethem G, Luoma P, Rantamaki M, Al Memar A, Kaakkola S, Hackman P et al. POLG mutations in neurodegenerative disorders with ataxia but no muscle involvement. Neurology 2004; 63: 1251–1257.

    Article  CAS  Google Scholar 

  22. Kato T, Stine OC, McMahon FJ, Crowe RR . Increased levels of a mitochondrial DNA deletion in the brain of patients with bipolar disorder. Biol Psychiatry 1997; 42: 871–875.

    Article  CAS  Google Scholar 

  23. Kato T, Takahashi S, Shioiri T, Murashita J, Hamakawa H, Inubushi T et al. Reduction of brain phosphocreatine in bipolar II disorder detected by phosphorus-31 magnetic resonance spectroscopy. J Affect Disord 1994; 31: 125–133.

    Article  CAS  Google Scholar 

  24. Murashita J, Kato T, Shioiri T, Inubushi T, Kato N . Altered brain energy metabolism in lithium-resistant bipolar disorder detected by photic stimulated 31P-MR spectroscopy. Psychol Med 2000; 30: 107–115.

    Article  CAS  Google Scholar 

  25. Barbiroli B, Montagna P, Martinelli P, Lodi R, Iotti S, Cortelli P et al. Defective brain energy metabolism shown by in vivo31P MR spectroscopy in 28 patients with mitochondrial cytopathies. J Cereb Blood Flow Metab 1993; 13: 469–474.

    Article  CAS  Google Scholar 

  26. Rango M, Bozzali M, Prelle A, Scarlato G, Bresolin N . Brain activation in normal subjects and in patients affected by mitochondrial disease without clinical central nervous system involvement: a phosphorus magnetic resonance spectroscopy study. J Cereb Blood Flow Metab 2001; 21: 85–91.

    Article  CAS  Google Scholar 

  27. Dager SR, Friedman SD, Parow A, Demopulos C, Stoll AL, Lyoo IK et al. Brain metabolic alterations in medication-free patients with bipolar disorder. Arch Gen Psychiatry 2004; 61: 450–458.

    Article  CAS  Google Scholar 

  28. Stork C, Renshaw PF . Mitochondrial dysfunction in bipolar disorder: evidence from magnetic resonance spectroscopy research. Mol Psychiatry 2005; 10: 900–919.

    Article  CAS  Google Scholar 

  29. Zhang D, Mott JL, Chang SW, Denniger G, Feng Z, Zassenhaus HP et al. Construction of transgenic mice with tissue-specific acceleration of mitochondrial DNA mutagenesis. Genomics 2000; 69: 151–161.

    Article  CAS  Google Scholar 

  30. Trifunovic A, Wredenberg A, Falkenberg M, Spelbrink JN, Rovio AT, Bruder CE et al. Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature 2004; 429: 417–423.

    Article  CAS  Google Scholar 

  31. Kujoth GC, Hiona A, Pugh TD, Someya S, Panzer K, Wohlgemuth SE et al. Mitochondrial DNA mutations, oxidative stress, and apoptosis in mammalian aging. Science 2005; 309: 481–484.

    Article  CAS  Google Scholar 

  32. Mayford M, Baranes D, Podsypanina K, Kandel ER . The 3′-untranslated region of CaMKIIα is a cis-acting signal for the localization and translation of mRNA in dendrites. Proc Natl Acad Sci USA 1996; 93: 13250–13255.

    Article  CAS  Google Scholar 

  33. World Health Organization. ICD 10: International Statistical Classification of Diseases and Related Health Problems (10 version). Geneva, Switzerland, 1992.

  34. Einat H, Manji HK, Belmaker RH . New approaches to modeling bipolar disorder. Psychopharmacol Bull 2003; 37: 47–63.

    PubMed  Google Scholar 

  35. Machado-Vieira R, Kapczinski F, Soares JC . Perspectives for the development of animal models of bipolar disorder. Prog Neuropsychopharmacol Biol Psychiatry 2004; 28: 209–224.

    Article  Google Scholar 

  36. Miyamoto Y, Yamada K, Noda Y, Mori H, Mishina M, Nabeshima T et al. Lower sensitivity to stress and altered monoaminergic neuronal function in mice lacking the NMDA receptor ɛ4 subunit. J Neurosci 2002; 22: 2335–2342.

    Article  CAS  Google Scholar 

  37. Ruf T . The Lomb-Scargle periodogram in biological rhythm: analysis of incomplete and unequally spaced time-series. Biol Rhythm Res 1999; 30: 178–201.

    Article  Google Scholar 

  38. Goldberg JF, Truman CJ . Antidepressant-induced mania: an overview of current controversies. Bipolar Disord 2003; 5: 407–420.

    Article  CAS  Google Scholar 

  39. Storlien LH, Higson FM, Gleeson RM, Smythe GA, Atrens DM . Effects of chronic lithium, amitriptyline and mianserin on glucoregulation, corticosterone and energy balance in the rat. Pharmacol Biochem Behav 1985; 22: 119–125.

    Article  CAS  Google Scholar 

  40. Nelson JF, Felicio LS, Randall PK, Sims C, Finch CE . A longitudinal study of estrous cyclicity in aging C57BL/6J mice: I Cycle frequency, length and vaginal cytology. Biol Reprod 1982; 27: 327–339.

    Article  CAS  Google Scholar 

  41. Carney SM, Goodwin GM . Lithium – a continuing story in the treatment of bipolar disorder. Acta Psychiatr Scand 2005; 111 (Suppl 426): 7–12.

    Article  Google Scholar 

  42. Bschor T, Lewitzka U, Sasse J, Adli M, Koberle U, Bauer M et al. Lithium augmentation in treatment-resistant depression: clinical evidence, serotonergic and endocrine mechanisms. Pharmacopsychiatry 2003; 36 (Suppl 3): S230–S234.

    CAS  PubMed  Google Scholar 

  43. Belke TW . Running and responding reinforced by the opportunity to run: effect of reinforcer duration. J Exp Anal Behav 1997; 67: 337–351.

    Article  CAS  Google Scholar 

  44. Sherwin CM . Voluntary wheel running: a review and novel interpretation. Anim Behav 1998; 56: 11–27.

    Article  CAS  Google Scholar 

  45. Daimon K, Yamada N, Tsujimoto T, Takahashi S . Circadian rhythm abnormalities of deep body temperature in depressive disorders. J Affect Disord 1992; 26: 191–198.

    Article  CAS  Google Scholar 

  46. Hirschfeld RM . History and evolution of the monoamine hypothesis of depression. J Clin Psychiatry 2000; 61 (Suppl 6): 4–6.

    CAS  PubMed  Google Scholar 

  47. Charney DS . Monoamine dysfunction and the pathophysiology and treatment of depression. J Clin Psychiatry 1998; 59 (Suppl 14): 11–14.

    CAS  PubMed  Google Scholar 

  48. Young LT, Warsh JJ, Kish SJ, Shannak K, Hornykeiwicz O . Reduced brain 5-HT and elevated NE turnover and metabolites in bipolar affective disorder. Biol Psychiatry 1994; 35: 121–127.

    Article  CAS  Google Scholar 

  49. Sobczak S, Honig A, van Duinen MA, Riedel WJ . Serotonergic dysregulation in bipolar disorders: a literature review of serotonergic challenge studies. Bipolar Disord 2002; 4: 347–356.

    Article  CAS  Google Scholar 

  50. Blehar MC, DePaulo Jr JR, Gershon ES, Reich T, Simpson SG, Nurnberger Jr JI et al. Women with bipolar disorder: findings from the NIMH Genetics Initiative sample. Psychopharmacol Bull 1998; 34: 239–243.

    CAS  PubMed  Google Scholar 

  51. Rasgon N, Bauer M, Grof P, Gyulai L, Elman S, Glenn T et al. Sex-specific self-reported mood changes by patients with bipolar disorder. J Psychiatr Res 2005; 39: 77–83.

    Article  Google Scholar 

  52. Steiner M, Haskett RF, Osmun JN, Carroll BJ . Treatment of premenstrual tension with lithium carbonate. A pilot study. Acta Psychiatr Scand 1980; 61: 96–102.

    Article  CAS  Google Scholar 

  53. Karadag F, Akdeniz F, Erten E, Pirildar S, Yucel B, Polat A et al. Menstrually related symptom changes in women with treatment-responsive bipolar disorder. Bipolar Disord 2004; 6: 253–259.

    Article  Google Scholar 

  54. Perry W, Minassian A, Feifel D, Braff DL . Sensorimotor gating deficits in bipolar disorder patients with acute psychotic mania. Biol Psychiatry 2001; 50: 418–424.

    Article  CAS  Google Scholar 

  55. Rich BA, Vinton D, Grillon C, Bhangoo RK, Leibenluft E . An investigation of prepulse inhibition in pediatric bipolar disorder. Bipolar Disord 2005; 7: 198–203.

    Article  Google Scholar 

  56. Barrett SL, Kelly C, Watson DR, Bell R, King DJ . Normal levels of prepulse inhibition in the euthymic phase of bipolar disorder. Psychol Med 2005; 35: 1737–1746.

    Article  Google Scholar 

  57. Ludewig S, Geyer MA, Ramseier M, Vollenweider FX, Rechsteiner E, Cattapan-Ludewig K et al. Information-processing deficits and cognitive dysfunction in panic disorder. J Psychiatry Neurosci 2005; 30: 37–43.

    PubMed  PubMed Central  Google Scholar 

  58. Simon NM, Otto MW, Wisniewski SR, Fossey M, Sagduyu K, Frank E et al. Anxiety disorder comorbidity in bipolar disorder patients: data from the first 500 participants in the Systematic Treatment Enhancement Program for Bipolar Disorder (STEP-BD). Am J Psychiatry 2004; 161: 2222–2229.

    Article  Google Scholar 

  59. Graziewicz MA, Longley MJ, Bienstock RJ, Zeviani M, Copeland WC . Structure-function defects of human mitochondrial DNA polymerase in autosomal dominant progressive external ophthalmoplegia. Nat Struct Mol Biol 2004; 11: 770–776.

    Article  CAS  Google Scholar 

  60. Spelbrink JN, Toivonen JM, Hakkaart GA, Kurkela JM, Cooper HM, Lehtinen SK et al. In vivo functional analysis of the human mitochondrial DNA polymerase POLG expressed in cultured human cells. J Biol Chem 2000; 275: 24818–24828.

    Article  CAS  Google Scholar 

  61. Luoma P, Melberg A, Rinne JO, Kaukonen JA, Nupponen NN, Chalmers RM et al. Parkinsonism, premature menopause, and mitochondrial DNA polymerase γ mutations: clinical and molecular genetic study. Lancet 2004; 364: 875–882.

    Article  CAS  Google Scholar 

  62. Van Goethem G, Luoma P, Rantamaki M, Al Memar A, Kaakkola S, Hackman P et al. POLG mutations in neurodegenerative disorders with ataxia but no muscle involvement. Neurology 2004; 63: 1251–1257.

    Article  CAS  Google Scholar 

  63. Hakonen AH, Heiskanen S, Juvonen V, Lappalainen I, Luoma PT, Rantamaki M et al. Mitochondrial DNA polymerase W748S mutation: a common cause of autosomal recessive ataxia with ancient European origin. Am J Hum Genet 2005; 77: 430–441.

    Article  CAS  Google Scholar 

  64. Di Fonzo A, Bordoni A, Crimi M, Sara G, Del Bo R, Bresolin N et al. POLG mutations in sporadic mitochondrial disorders with multiple mtDNA deletions. Hum Mutat 2003; 22: 498–499.

    Article  Google Scholar 

  65. Pozzan T, Magalhaes P, Rizzuto R . The comeback of mitochondria to calcium signalling. Cell Calcium 2000; 28: 279–283.

    Article  CAS  Google Scholar 

  66. Soares JC, Mallinger AG . Intracellular phosphatidylinositol pathway abnormalities in bipolar disorder patients. Psychopharmacol Bull 1997; 33: 685–691.

    CAS  Google Scholar 

  67. Yamawaki S, Kagaya A, Okamoto Y, Shimizu M, Nishida A, Uchitoni Y . Enhanced calcium response to serotonin in platelets from patients with affective disorders. J Psychiatry Neurosci 1996; 21: 321–324.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Hahn C-G, Gomez G, Restrepo D, Friedman E, Josiassen R, Pribitkin EA et al. Aberrant intracellular calcium signaling in olfactory neurons from patients with bipolar disorder. Am J Psychiatry 2005; 162: 616–618.

    Article  Google Scholar 

  69. Kasamatsu H, Robberson DL, Vinograd J . A novel closed-circular mitochondrial DNA with properties of a replicating intermediate. Proc Natl Acad Sci USA 1971; 68: 2252–2257.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr Mark Mayford (The Scripps Research Institute) for the CaMKIIα promoter constructs (pNN265 and pMM403). We are grateful to staffs in Divisions of Animal Experiments and Common Instrumentations (Research Resources Center, Brain Science Institute [BSI], RIKEN) for technical assistance and members in our laboratory for useful discussions. This work was supported by the Grants for Laboratory for Molecular Dynamics of Mental Disorders, RIKEN BSI, Grant-in-Aid from the Japanese Ministry of Health and Labor, and Grants-in-Aid from the Japanese Ministry of Education, Culture, Sports, Science and Technology. T Kasahara is supported by a special postdoctoral researcher fellowship (RIKEN).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T Kato.

Additional information

Accession Numbers and Electronic-Database Information

The DDBJ/EMBL/GenBank accession numbers of the sequences discussed in this paper are the following: mouse POLG cDNA, AB121698; and C57BL/6J mouse mtDNA AY172335.

The Mendelian Inheritance in Man (http://www.ncbi.nlm.nih.gov/omim/) entry numbers of CPEO are 157640 (caused by mutation in the POLG gene), 609283 (caused by mutation in the ANT1 gene), and 609286 (caused by mutation in the Twinkle gene).

Supplementary Information accompanies the paper on the Molecular Psychiatry website (http://www.nature.com/mp)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kasahara, T., Kubota, M., Miyauchi, T. et al. Mice with neuron-specific accumulation of mitochondrial DNA mutations show mood disorder-like phenotypes. Mol Psychiatry 11, 577–593 (2006). https://doi.org/10.1038/sj.mp.4001824

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4001824

Keywords

This article is cited by

Search

Quick links