Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Impact of complex genetic variation in COMT on human brain function

Abstract

Catechol-O-methyltransferase (COMT) has been shown to be critical for prefrontal dopamine flux, prefrontal cortex-dependent cognition and activation. Several potentially functional variants in the gene have been identified, but considerable controversy exists regarding the contribution of individual alleles and haplotypes to risk for schizophrenia, partly because clinical phenotypes are ill-defined and preclinical studies are limited by lack of adequate models. Here, we propose a neuroimaging approach to overcome these limitations by characterizing the functional impact of ambiguous haplotypes on a neural system-level intermediate phenotype in humans. Studying 126 healthy control subjects during a working-memory paradigm, we find that a previously described risk variant in a functional Val158Met (rs4680) polymorphism interacts with a P2 promoter region SNP (rs2097603) and an SNP in the 3′ region (rs165599) in predicting inefficient prefrontal working memory response. We report evidence that the nonlinear response of prefrontal neurons to dopaminergic stimulation is a neural mechanism underlying these nonadditive genetic effects. This work provides an in vivo approach to functional validation in brain of the biological impact of complex genetic variations within a gene that may be critical for its clinical association.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Collins FS, Green ED, Guttmacher AE, Guyer MS . A vision for the future of genomics research. Nature 2003; 422: 835–847.

    Article  CAS  PubMed  Google Scholar 

  2. Hinds DA, Stuve LL, Nilsen GB, Halperin E, Eskin E, Ballinger DG et al. Whole-genome patterns of common DNA variation in three human populations. Science 2005; 307: 1072–1079.

    Article  CAS  PubMed  Google Scholar 

  3. Altshuler D, Brooks LD, Chakravarti A, Collins FS, Daly MJ, Donnelly P . A haplotype map of the human genome. Nature 2005; 437: 1299–1320.

    Article  Google Scholar 

  4. Schaid DJ . Evaluating associations of haplotypes with traits. Genet Epidemiol 2004; 27: 348–364.

    Article  PubMed  Google Scholar 

  5. Gabriel SB, Schaffner SF, Nguyen H, Moore JM, Roy J, Blumenstiel B et al. The structure of haplotype blocks in the human genome. Science 2002; 296: 2225–2229.

    Article  CAS  PubMed  Google Scholar 

  6. Lewis DA, Melchitzky DS, Sesack SR, Whitehead RE, Auh S, Sampson A . Dopamine transporter immunoreactivity in monkey cerebral cortex: regional, laminar, and ultrastructural localization. J Comp Neurol 2001; 432: 119–136.

    Article  CAS  PubMed  Google Scholar 

  7. Tunbridge EM, Bannerman DM, Sharp T, Harrison PJ . Catechol-o-methyltransferase inhibition improves set-shifting performance and elevates stimulated dopamine release in the rat prefrontal cortex. J Neurosci 2004; 24: 5331–5335.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Harrison PJ, Weinberger DR . Schizophrenia genes, gene expression, and neuropathology: on the matter of their convergence. Mol Psychiatry 2005; 10: 40–68; image 45.

    Article  CAS  PubMed  Google Scholar 

  9. Murphy KC . Schizophrenia and velo-cardio-facial syndrome. Lancet 2002; 359: 426–430.

    Article  PubMed  Google Scholar 

  10. Chen J, Lipska BK, Halim N, Ma QD, Matsumoto M, Melhem S et al. Functional analysis of genetic variation in catechol-O-methyltransferase (COMT): effects on mRNA, protein, and enzyme activity in postmortem human brain. Am J Hum Genet 2004; 75: 807–821.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Egan MF, Goldberg TE, Kolachana BS, Callicott JH, Mazzanti CM, Straub RE et al. Effect of COMT Val108/158 Met genotype on frontal lobe function and risk for schizophrenia. Proc Natl Acad Sci USA 2001; 98: 6917–6922.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Goldberg TE, Egan MF, Gscheidle T, Coppola R, Weickert T, Kolachana BS et al. Executive subprocesses in working memory: relationship to catechol-O-methyltransferase Val158Met genotype and schizophrenia. Arch Gen Psychiatry 2003; 60: 889–896.

    Article  CAS  PubMed  Google Scholar 

  13. Mattay VS, Goldberg TE, Fera F, Hariri AR, Tessitore A, Egan MF et al. Catechol O-methyltransferase val158-met genotype and individual variation in the brain response to amphetamine. Proc Natl Acad Sci USA 2003; 100: 6186–6191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Akil M, Kolachana BS, Rothmond DA, Hyde TM, Weinberger DR, Kleinman JE . Catechol-O-methyltransferase genotype and dopamine regulation in the human brain. J Neurosci 2003; 23: 2008–2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Meyer-Lindenberg A, Kohn PD, Kolachana B, Kippenhan S, McInerney-Leo A, Nussbaum R et al. Midbrain dopamine and prefrontal function in humans: interaction and modulation by COMT genotype. Nat Neurosci 2005; 8: 594–596.

    Article  CAS  PubMed  Google Scholar 

  16. Glatt SJ, Faraone SV, Tsuang MT . Association between a functional catechol O-methyltransferase gene polymorphism and schizophrenia: meta-analysis of case–control and family-based studies. Am J Psychiatry 2003; 160: 469–476.

    Article  PubMed  Google Scholar 

  17. Fan JB, Zhang CS, Gu NF, Li XW, Sun WW, Wang HY et al. Catechol-O-methyltransferase gene Val/Met functional polymorphism and risk of schizophrenia: a large-scale association study plus meta-analysis. Biol Psychiatry 2005; 57: 139–144.

    Article  CAS  PubMed  Google Scholar 

  18. Shifman S, Bronstein M, Sternfeld M, Pisante-Shalom A, Lev-Lehman E, Weizman A et al. A highly significant association between a COMT haplotype and schizophrenia. Am J Hum Genet 2002; 71: 1296–1302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bray NJ, Buckland PR, Williams NM, Williams HJ, Norton N, Owen MJ et al. A haplotype implicated in schizophrenia susceptibility is associated with reduced COMT expression in human brain. Am J Hum Genet 2003; 73: 152–161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Palmatier MA, Pakstis AJ, Speed W, Paschou P, Goldman D, Odunsi A et al. COMT haplotypes suggest P2 promoter region relevance for schizophrenia. Mol Psychiatry 2004; 9: 859–870.

    Article  CAS  PubMed  Google Scholar 

  21. Excoffier L, Slatkin M . Maximum-likelihood estimation of molecular haplotype frequencies in a diploid population. Mol Biol Evol 1995; 12: 921–927.

    CAS  PubMed  Google Scholar 

  22. Terwilliger JD, Ott J . Handbook of human genetic linkage. Johns Hopkins University Press: Baltimore, 1994.

    Google Scholar 

  23. Stephens M, Donnelly P . A comparison of bayesian methods for haplotype reconstruction from population genotype data. Am J Hum Genet 2003; 73: 1162–1169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhao LP, Li SS, Khalid N . A method for the assessment of disease associations with single-nucleotide polymorphism haplotypes and environmental variables in case–control studies. Am J Hum Genet 2003; 72: 1231–1250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tanck MW, Klerkx AH, Jukema JW, De Knijff P, Kastelein JJ, Zwinderman AH . Estimation of multilocus haplotype effects using weighted penalised log-likelihood: analysis of five sequence variations at the cholesteryl ester transfer protein gene locus. Ann Hum Genet 2003; 67 (Part 2): 175–184.

    Article  CAS  PubMed  Google Scholar 

  26. Schaid DJ, Rowland CM, Tines DE, Jacobson RM, Poland GA . Score tests for association between traits and haplotypes when linkage phase is ambiguous. Am J Hum Genet 2002; 70: 425–434.

    Article  PubMed  Google Scholar 

  27. Zaykin DV, Westfall PH, Young SS, Karnoub MA, Wagner MJ, Ehm MG . Testing association of statistically inferred haplotypes with discrete and continuous traits in samples of unrelated individuals. Hum Hered 2002; 53: 79–91.

    Article  PubMed  Google Scholar 

  28. Worsley KJ, Marrett S, Neelin P, Vandal AC, Friston KJ, Evans AC . A unified statistical approach for determining significant signals in images of cerebral activation. Hum Brain Mapping 1996; 4: 58–73.

    Article  CAS  Google Scholar 

  29. DeMille MM, Kidd JR, Ruggeri V, Palmatier MA, Goldman D, Odunsi A et al. Population variation in linkage disequilibrium across the COMT gene considering promoter region and coding region variation. Hum Genet 2002; 111: 521–537.

    Article  CAS  PubMed  Google Scholar 

  30. Williams GV, Goldman-Rakic PS . Modulation of memory fields by dopamine D1 receptors in prefrontal cortex. Nature 1995; 376: 572–575.

    Article  CAS  PubMed  Google Scholar 

  31. Handoko HY, Nyholt DR, Hayward NK, Nertney DA, Hannah DE, Windus LC et al. Separate and interacting effects within the catechol-O-methyltransferase (COMT) are associated with schizophrenia. Mol Psychiatry 2005; 10: 589–597.

    Article  CAS  PubMed  Google Scholar 

  32. Akey J, Jin L, Xiong M . Haplotypes vs single marker linkage disequilibrium tests: what do we gain? Eur J Hum Genet 2001; 9: 291–300.

    Article  CAS  PubMed  Google Scholar 

  33. Long AD, Langley CH . The power of association studies to detect the contribution of candidate genetic loci to variation in complex traits. Genome Res 1999; 9: 720–731.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Clayton D, Chapman J, Cooper J . Use of unphased multilocus genotype data in indirect association studies. Genet Epidemiol 2004; 27: 415–428.

    Article  PubMed  Google Scholar 

  35. Gottesman II, Gould TD . The endophenotype concept in psychiatry: etymology and strategic intentions. Am J Psychiatry 2003; 160: 636–645.

    Article  PubMed  Google Scholar 

  36. Weinberger DR, Egan MF, Bertolino A, Callicott JH, Mattay VS, Lipska BK et al. Prefrontal neurons and the genetics of schizophrenia. Biol Psychiatry 2001; 50: 825–844.

    Article  CAS  PubMed  Google Scholar 

  37. Sawaguchi T, Goldman-Rakic PS . D1 dopamine receptors in prefrontal cortex: involvement in working memory. Science 1991; 251: 947–950.

    Article  CAS  PubMed  Google Scholar 

  38. Seamans JK, Floresco SB, Phillips AG . D1 receptor modulation of hippocampal-prefrontal cortical circuits integrating spatial memory with executive functions in the rat. J Neurosci 1998; 18: 1613–1621.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Durstewitz D, Kelc M, Gunturkun O . A neurocomputational theory of the dopaminergic modulation of working memory functions. J Neurosci 1999; 19: 2807–2822.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Seamans JK, Yang CR . The principal features and mechanisms of dopamine modulation in the prefrontal cortex. Prog Neurobiol 2004; 74: 1–58.

    Article  CAS  PubMed  Google Scholar 

  41. Smolka MN, Schumann G, Wrase J, Grusser SM, Flor H, Mann K et al. Catechol-O-methyltransferase val158met genotype affects processing of emotional stimuli in the amygdala and prefrontal cortex. J Neurosci 2005; 25: 836–842.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Liddle PF, Kiehl KA, Smith AM . Event-related fMRI study of response inhibition. Hum Brain Mapp 2001; 12: 100–109.

    Article  CAS  PubMed  Google Scholar 

  43. Morita M, Nakahara K, Hayashi T . A rapid presentation event-related functional magnetic resonance imaging study of response inhibition in macaque monkeys. Neurosci Lett 2004; 356: 203–206.

    Article  CAS  PubMed  Google Scholar 

  44. Shafritz KM, Kartheiser P, Belger A . Dissociation of neural systems mediating shifts in behavioral response and cognitive set. Neuroimage 2005; 25: 600–606.

    Article  PubMed  Google Scholar 

  45. Garavan H, Ross TJ, Stein EA . Right hemispheric dominance of inhibitory control: an event-related functional MRI study. Proc Natl Acad Sci USA 1999; 96: 8301–8306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Gold JM, Carpenter C, Randolph C, Goldberg TE, Weinberger DR . Auditory working memory and Wisconsin Card Sorting Test performance in schizophrenia. Arch Gen Psychiatry 1997; 54: 159–165.

    Article  CAS  PubMed  Google Scholar 

  47. Ford JM, Gray M, Whitfield SL, Turken AU, Glover G, Faustman WO et al. Acquiring and inhibiting prepotent responses in schizophrenia: event-related brain potentials and functional magnetic resonance imaging. Arch Gen Psychiatry 2004; 61: 119–129.

    Article  PubMed  Google Scholar 

  48. Nikodemus KK, Kolachana BS, Vakkalanta R, Straub RE, Giegling I, Egan MF et al. Evidence for statistical epistasis between catechol-O-methyltransferase (COMT) and polymorphisms in RGS4, G72 (DAOA), GRM3 and DISC1: influence on risk of schizophrenia. Hum Genet, Submitted.

  49. Abecasis GR, Cookson WO . GOLD – graphical overview of linkage disequilibrium. Bioinformatics 2000; 16: 182–183.

    Article  CAS  PubMed  Google Scholar 

  50. Fuller WA . Measurement Error Models. Wiley: New York, 1987.

    Book  Google Scholar 

Download references

Acknowledgements

We thank John Meyers for analysis of our genomic control panel, David Goldman and Richard Straub for helpful discussion. This work was supported by the NIMH/IRP and a bench-to-bedside award by NIMH, NIAAA and ORD to AML.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Meyer-Lindenberg.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website (http://www.nature.com/mp)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meyer-Lindenberg, A., Nichols, T., Callicott, J. et al. Impact of complex genetic variation in COMT on human brain function. Mol Psychiatry 11, 867–877 (2006). https://doi.org/10.1038/sj.mp.4001860

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4001860

Keywords

This article is cited by

Search

Quick links