Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Hippocampus-specific deletion of BDNF in adult mice impairs spatial memory and extinction of aversive memories

Abstract

Brain-derived neurotrophic factor (BDNF) is known to play a critical role in the synaptic plasticity underlying the acquisition and/or consolidation of certain forms of memory. Additionally, a role has been suggested for neurotrophin function within the hippocampus in protection from anxiety and depressive disorders. Understanding the function of this important gene in adult animals has been limited however, because standard knockouts are confounded by gene effects during development. There are no BDNF receptor-specific pharmacological agents, and infusions of neuropeptides or antibodies have other significant limitations. In these studies, we injected a lentivirus expressing Cre recombinase bilaterally into the dorsal hippocampus in adult mice floxed at the BDNF locus to facilitate the site-specific deletion of the BDNF gene in adult animals. Significant decreases in BDNF mRNA expression are demonstrated in the hippocampi of lenti-Cre-infected animals compared with control lenti-GFP-infected animals. Behaviorally, there were no significant effects of BDNF deletion on locomotion or baseline anxiety measured with startle. In contrast, hippocampal-specific BDNF deletions impair novel object recognition and spatial learning as demonstrated with the Morris water maze. Although there were no effects on the acquisition or expression fear, animals with BDNF deletions show significantly reduced extinction of conditioned fear as measured both with fear-potentiated startle and freezing. These data suggest that the cognitive deficits and impairment in extinction of aversive memory found in depression and anxiety disorders may be directly related to decreased hippocampal BDNF.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 2
Figure 1
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Ernfors P, Lee KF, Jaenisch R . Mice lacking brain-derived neurotrophic factor develop with sensory deficits. Nature 1994; 368: 147–150.

    Article  CAS  PubMed  Google Scholar 

  2. Korte M, Carroll P, Wolf E, Brem G, Thoenen H, Bonhoeffer T . Hippocampal long-term potentiation is impaired in mice lacking brain-derived neurotrophic factor. Proc Natl Acad Sci USA 1995; 92: 8856–8860.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hall J, Thomas KL, Everitt BJ . Rapid and selective induction of BDNF expression in the hippocampus during contextual learning. Nat Neurosci 2000; 3: 533–535.

    Article  CAS  PubMed  Google Scholar 

  4. Linnarsson S, Bjorklund A, Ernfors P . Learning deficit in BDNF mutant mice. Eur J Neurosci 1997; 9: 2581–2587.

    Article  CAS  PubMed  Google Scholar 

  5. Kesslak JP, So V, Choi J, Cotman CW, Gomez-Pinilla F . Learning upregulates brain-derived neurotrophic factor messenger ribonucleic acid: a mechanism to facilitate encoding and circuit maintenance? Behav Neurosci 1998; 112: 1012–1019.

    Article  CAS  PubMed  Google Scholar 

  6. Mizuno M, Yamada K, Olariu A, Nawa H, Nabeshima T . Involvement of brain-derived neurotrophic factor in spatial memory formation and maintenance in a radial arm maze test in rats. J Neurosci 2000; 20: 7116–7121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Minichiello L, Korte M, Wolfer D, Kuhn R, Unsicker K, Cestari V et al. Essential role for TrkB receptors in hippocampus-mediated learning. Neuron 1999; 24: 401–414.

    Article  CAS  PubMed  Google Scholar 

  8. Duman RS, Monteggia LM . A neurotrophic model for stress-related mood disorders. Biol Psychiatry 2006; 59: 1116–1127.

    Article  CAS  PubMed  Google Scholar 

  9. Gorski JA, Balogh SA, Wehner JM, Jones KR . Learning deficits in forebrain-restricted brain-derived neurotrophic factor mutant mice. Neuroscience 2003; 121: 341–354.

    Article  CAS  PubMed  Google Scholar 

  10. Monteggia LM, Barrot M, Powell CM, Berton O, Galanis V, Gemelli T et al. Essential role of brain-derived neurotrophic factor in adult hippocampal function. Proc Natl Acad Sci USA 2004; 101: 10827–10832.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Molteni R, Wu A, Vaynman S, Ying Z, Barnard RJ, Gomez-Pinilla F . Exercise reverses the harmful effects of consumption of a high-fat diet on synaptic and behavioral plasticity associated to the action of brain-derived neurotrophic factor. Neuroscience 2004; 123: 429–440.

    Article  CAS  PubMed  Google Scholar 

  12. Chen G, Kolbeck R, Barde YA, Bonhoeffer T, Kossel A . Relative contribution of endogenous neurotrophins in hippocampal long-term potentiation. J Neurosci 1999; 19: 7983–7990.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Morris RG, Garrud P, Rawlins JN, O'Keefe J . Place navigation impaired in rats with hippocampal lesions. Nature 1982; 297: 681–683.

    Article  CAS  PubMed  Google Scholar 

  14. Crawley JN, Paylor R . A proposed test battery and constellations of specific behavioral paradigms to investigate the behavioral phenotypes of transgenic and knockout mice. Horm Behav 1997; 31: 197–211.

    Article  CAS  PubMed  Google Scholar 

  15. Crawley JN, Belknap JK, Collins A, Crabbe JC, Frankel W, Henderson N et al. Behavioral phenotypes of inbred mouse strains: implications and recommendations for molecular studies. Psychopharmacology (Berl) 1997; 132: 107–124.

    Article  CAS  Google Scholar 

  16. Wiltgen BJ, Sanders MJ, Anagnostaras SG, Sage JR, Fanselow MS . Context fear learning in the absence of the hippocampus. J Neurosci 2006; 26: 5484–5491.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Anagnostaras SG, Gale GD, Fanselow MS . Hippocampus and contextual fear-conditioning: recent controversies and advances. Hippocampus 2001; 11: 8–17.

    Article  CAS  PubMed  Google Scholar 

  18. Gewirtz JC, McNish KA, Davis M . Is the hippocampus necessary for contextual fear-conditioning? Behav Brain Res 2000; 110: 83–95.

    Article  CAS  PubMed  Google Scholar 

  19. Corcoran KA, Desmond TJ, Frey KA, Maren S . Hippocampal inactivation disrupts the acquisition and contextual encoding of fear extinction. J Neurosci 2005; 25: 8978–8987.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Bouton ME . Context and behavioral processes in extinction. Learn Mem 2004; 11: 485–494.

    Article  PubMed  Google Scholar 

  21. Rios M, Fan G, Fekete C, Kelly J, Bates B, Kuehn R et al. Conditional deletion of brain-derived neurotrophic factor in the postnatal brain leads to obesity and hyperactivity. Mol Endocrinol 2001; 15: 1748–1757.

    Article  CAS  PubMed  Google Scholar 

  22. Nibuya M, Morinobu S, Duman RS . Regulation of BDNF and trkB mRNA in rat brain by chronic electroconvulsive seizure and antidepressant drug treatments. J Neurosci 1995; 15: 7539–7547.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Duman RS, Heninger GR, Nestler EJ . A molecular and cellular theory of depression. Arch Gen Psychiatry 1997; 54: 597–606.

    Article  CAS  PubMed  Google Scholar 

  24. Bremner JD . Functional neuroanatomical correlates of traumatic stress revisited 7 years later, this time with data. Psychopharmacol Bull 2003; 37: 6–25.

    PubMed  Google Scholar 

  25. Bremner JD, Narayan M, Anderson ER, Staib LH, Miller HL, Charney DS . Hippocampal volume reduction in major depression. Am J Psychiatry 2000; 157: 115–118.

    Article  CAS  PubMed  Google Scholar 

  26. Bremner JD, Randall P, Scott TM, Bronen RA, Seibyl JP, Southwick SM et al. MRI-based measurement of hippocampal volume in patients with combat-related posttraumatic stress disorder. Am J Psychiatry 1995; 152: 973–981.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bremner JD . Neuroimaging studies in post-traumatic stress disorder. Curr Psychiatry Rep 2002; 4: 254–263.

    Article  PubMed  Google Scholar 

  28. Fossati P, Radtchenko A, Boyer P . Neuroplasticity: from MRI to depressive symptoms. Eur Neuropsychopharmacol 2004; 14: S503–S510.

    Article  CAS  PubMed  Google Scholar 

  29. Gillespie CF, Ressler KJ . Emotional learning and glutamate: translational perspectives. CNS Spectr 2005; 10: 831–839.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Rothbaum BO, Davis M . Applying learning principles to the treatment of post-trauma reactions. Ann NY Acad Sci 2003; 1008: 112–121.

    Article  PubMed  Google Scholar 

  31. Bremner JD, Vermetten E, Schmahl C, Vaccarino V, Vythilingam M, Afzal N et al. Positron emission tomographic imaging of neural correlates of a fear acquisition and extinction paradigm in women with childhood sexual-abuse-related post-traumatic stress disorder. Psychol Med 2005; 35: 791–806.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Milad MR, Rauch SL, Pitman RK, Quirk GJ . Fear extinction in rats: implications for human brain imaging and anxiety disorders. Biol Psychol 2006; 73: 61–71.

    Article  PubMed  Google Scholar 

  33. Soriano P . Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat Genet 1999; 21: 70–71.

    Article  CAS  PubMed  Google Scholar 

  34. Tiscornia G, Singer O, Ikawa M, Verma IM . A general method for gene knockdown in mice by using lentiviral vectors expressing small interfering RNA. Proc Natl Acad Sci USA 2003; 100: 1844–1848.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Naldini L, Blomer U, Gage FH, Trono D, Verma IM . Efficient transfer, integration, and sustained long-term expression of the transgene in adult rat brains injected with a lentiviral vector. Proc Natl Acad Sci 1996; 93: 11382–11388.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Miyoshi H, Blomer U, Takahashi M, Gage FH, Verma IM . Development of a self-inactivating lentivirus vector. J Virol 1998; 72: 8150–8157.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Pfeifer A, Brandon EP, Kootstra N, Gage FH, Verma IM . Delivery of the Cre recombinase by a self-deleting lentiviral vector: efficient gene targeting in vivo. Proc Natl Acad Sci USA 2001; 98: 11450–11455.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Dikalova A, Clempus R, Lassegue B, Cheng G, McCoy J, Dikalov S et al. Nox1 overexpression potentiates angiotensin II-induced hypertension and vascular smooth muscle hypertrophy in transgenic mice. Circulation 2005; 112: 2668–2676.

    Article  CAS  PubMed  Google Scholar 

  39. Paxinos G, Franklin KBJ . The Mouse Brain in Stereotaxic Coordinates, 2nd edn. Academic Press: San Diego, 2001.

    Google Scholar 

  40. Ressler KJ, Paschall G, Zhou XL, Davis M . Regulation of synaptic plasticity genes during consolidation of fear-conditioning. J Neurosci 2002; 22: 7892–7902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Chhatwal JP, Myers KM, Ressler KJ, Davis M . Regulation of gephyrin and GABAA receptor binding within the amygdala after fear acquisition and extinction. J Neurosci 2005; 25: 502–506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Rattiner LM, Davis M, Ressler KJ . Differential regulation of brain-derived neurotrophic factor transcripts during the consolidation of fear learning. Learn Mem 2004; 11: 727–731.

    Article  PubMed  Google Scholar 

  43. Ennaceur A, Neave N, Aggleton JP . Neurotoxic lesions of the perirhinal cortex do not mimic the behavioural effects of fornix transection in the rat. Behav Brain Res 1996; 80: 9–25.

    Article  CAS  PubMed  Google Scholar 

  44. Ennaceur A, Delacour J . A new one-trial test for neurobiological studies of memory in rats. 1: behavioral data. Behav Brain Res 1988; 31: 47–59.

    Article  CAS  PubMed  Google Scholar 

  45. Blanchard RJ, Blanchard DC . Crouching as an index of fear. J Comp Physiol Psychol 1969; 67: 370–375.

    Article  CAS  PubMed  Google Scholar 

  46. Blanchard RJ, Blanchard DC . Passive and active reactions to fear-eliciting stimuli. J Comp Physiol Psychol 1969; 68: 129–135.

    Article  CAS  PubMed  Google Scholar 

  47. Davis M . The role of the amygdala in fear and anxiety. Annu Rev Neurosci 1992; 15: 353–375.

    Article  CAS  PubMed  Google Scholar 

  48. Jones SV, Heldt SA, Davis M, Ressler KJ . Olfactory-mediated fear-conditioning in mice: simultaneous measurements of fear-potentiated startle and freezing. Behav Neurosci 2005; 119: 329–335.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Heldt SA, Ressler KJ . Lesions of the habenula produce stress- and dopamine-dependent alterations in prepulse inhibition and locomotion. Brain Res 2006; 1073–1074: 229–239.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. D'Hooge R, De Deyn PP . Applications of the Morris water maze in the study of learning and memory. Brain Res Brain Res Rev 2001; 36: 60–90.

    Article  CAS  PubMed  Google Scholar 

  51. Logue SF, Paylor R, Wehner JM . Hippocampal lesions cause learning deficits in inbred mice in the Morris water maze and conditioned-fear task. Behav Neurosci 1997; 111: 104–113.

    Article  CAS  PubMed  Google Scholar 

  52. Aggleton JP, Blindt HS, Rawlins JN . Effects of amygdaloid and amygdaloid-hippocampal lesions on object recognition and spatial working memory in rats. Behav Neurosci 1989; 103: 962–974.

    Article  CAS  PubMed  Google Scholar 

  53. Cassaday HJ, Rawlins JN . The hippocampus, objects, and their contexts. Behav Neurosci 1997; 111: 1228–1244.

    Article  CAS  PubMed  Google Scholar 

  54. Hammond RS, Tull LE, Stackman RW . On the delay-dependent involvement of the hippocampus in object recognition memory. Neurobiol Learn Mem 2004; 82: 26–34.

    Article  PubMed  Google Scholar 

  55. Lee I, Hunsaker MR, Kesner RP . The role of hippocampal subregions in detecting spatial novelty. Behav Neurosci 2005; 119: 145–153.

    Article  PubMed  Google Scholar 

  56. Moses SN, Cole C, Driscoll I, Ryan JD . Differential contributions of hippocampus, amygdala and perirhinal cortex to recognition of novel objects, contextual stimuli and stimulus relationships. Brain Res Bull 2005; 67: 62–76.

    Article  PubMed  Google Scholar 

  57. Phillips RG, LeDoux JE . Differential contribution of amygdala and hippocampus to cued and contextual fear-conditioning. Behav Neurosci 1992; 106: 274–285.

    Article  CAS  PubMed  Google Scholar 

  58. Sanders MJ, Wiltgen BJ, Fanselow MS . The place of the hippocampus in fear-conditioning. Eur J Pharmacol 2003; 463: 217–223.

    Article  CAS  PubMed  Google Scholar 

  59. McNish KA, Gewirtz JC, Davis M . Evidence of contextual fear after lesions of the hippocampus: a disruption of freezing but not fear-potentiated startle. J Neurosci 1997; 17: 9353–9360.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Frankland PW, Cestari V, Filipkowski RK, McDonald RJ, Silva AJ . The dorsal hippocampus is essential for context discrimination but not for contextual conditioning. Behav Neurosci 1998; 112: 863–874.

    Article  CAS  PubMed  Google Scholar 

  61. Maren S, Aharonov G, Fanselow MS . Neurotoxic lesions of the dorsal hippocampus and Pavlovian fear-conditioning in rats. Behav Brain Res 1997; 88: 261–274.

    Article  CAS  PubMed  Google Scholar 

  62. Maren S, Holt W . The hippocampus and contextual memory retrieval in Pavlovian conditioning. Behav Brain Res 2000; 110: 97–108.

    Article  CAS  PubMed  Google Scholar 

  63. Liu IY, Lyons WE, Mamounas LA, Thompson RF . Brain-derived neurotrophic factor plays a critical role in contextual fear-conditioning. J Neurosci 2004; 24: 7958–7963.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Corcoran KA, Maren S . Hippocampal inactivation disrupts contextual retrieval of fear memory after extinction. J Neurosci 2001; 21: 1720–1726.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Frohardt RJ, Guarraci FA, Bouton ME . The effects of neurotoxic hippocampal lesions on two effects of context after fear extinction. Behav Neurosci 2000; 114: 227–240.

    Article  CAS  PubMed  Google Scholar 

  66. Schimanski LA, Wahlsten D, Nguyen PV . Selective modification of short-term hippocampal synaptic plasticity and impaired memory extinction in mice with a congenitally reduced hippocampal commissure. J Neurosci 2002; 22: 8277–8286.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Cammarota M, Bevilaqua LR, Kerr D, Medina JH, Izquierdo I . Inhibition of mRNA and protein synthesis in the CA1 region of the dorsal hippocampus blocks reinstallment of an extinguished conditioned fear response. J Neurosci 2003; 23: 737–741.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Szapiro G, Vianna MR, McGaugh JL, Medina JH, Izquierdo I . The role of NMDA glutamate receptors, PKA, MAPK and CaMKII in the hippocampus in extinction of conditioned fear. Hippocampus 2003; 13: 53–58.

    Article  CAS  PubMed  Google Scholar 

  69. Vianna MR, Igaz LM, Coitinho AS, Medina JH, Izquierdo I . Memory extinction requires gene expression in rat hippocampus. Neurobiol Learn Mem 2003; 79: 199–203.

    Article  CAS  PubMed  Google Scholar 

  70. Vianna MR, Szapiro G, McGaugh JL, Medina JH, Izquierdo I . Retrieval of memory for fear-motivated training initiates extinction requiring protein synthesis in the rat hippocampus. Proc Natl Acad Sci USA 2001; 98: 12251–12254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Bevilaqua LR, da Silva WN, Medina JH, Izquierdo I, Cammarota M . Extinction and reacquisition of a fear-motivated memory require activity of the Src family of tyrosine kinases in the CA1 region of the hippocampus. Pharmacol Biochem Behav 2005; 81: 139–145.

    Article  CAS  PubMed  Google Scholar 

  72. Fischer A, Sananbenesi F, Schrick C, Spiess J, Radulovic J . Distinct roles of hippocampal de novo protein synthesis and actin rearrangement in extinction of contextual fear. J Neurosci 2004; 24: 1962–1966.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Lattal KM, Abel T . Different requirements for protein synthesis in acquisition and extinction of spatial preferences and context-evoked fear. J Neurosci 2001; 21: 5773–5780.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Knight DC, Smith CN, Cheng DT, Stein EA, Helmstetter FJ . Amygdala and hippocampal activity during acquisition and extinction of human fear-conditioning. Cogn Affect Behav Neurosci 2004; 4: 317–325.

    Article  PubMed  Google Scholar 

  75. LaBar KS, Phelps EA . Reinstatement of conditioned fear in humans is context dependent and impaired in amnesia. Behav Neurosci 2005; 119: 677–686.

    Article  PubMed  Google Scholar 

  76. Chhatwal JP, Stanek-Rattiner L, Davis M, Ressler KJ . Amygdala BDNF signaling is required for consolidation but not encoding of extinction. Nat Neurosci 2006; 9: 870–872.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Smith MA, Makino S, Kvetnansky R, Post RM . Stress and glucocorticoids affect the expression of brain-derived neurotrophic factor and neurotrophin-3 mRNAs in the hippocampus. J Neurosci 1995; 15: 1768–1777.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Barrientos RM, Sprunger DB, Campeau S, Higgins EA, Watkins LR, Rudy JW et al. Brain-derived neurotrophic factor mRNA downregulation produced by social isolation is blocked by intrahippocampal interleukin-1 receptor antagonist. Neuroscience 2003; 121: 847–853.

    Article  CAS  PubMed  Google Scholar 

  79. Pizarro JM, Lumley LA, Medina W, Robison CL, Chang WE, Alagappan A et al. Acute social defeat reduces neurotrophin expression in brain cortical and subcortical areas in mice. Brain Res 2004; 1025: 10–20.

    Article  CAS  PubMed  Google Scholar 

  80. Benninghoff J, Schmitt A, Mossner R, Lesch KP . When cells become depressed: focus on neural stem cells in novel treatment strategies against depression. J Neural Transm 2002; 109: 947–962.

    Article  CAS  PubMed  Google Scholar 

  81. Xu B, Goulding EH, Zang K, Cepoi D, Cone RD, Jones KR et al. Brain-derived neurotrophic factor regulates energy balance downstream of melanocortin-4 receptor. Nat Neurosci 2003; 6: 736–742.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Van Hoomissen JD, Chambliss HO, Holmes PV, Dishman RK . Effects of chronic exercise and imipramine on mRNA for BDNF after olfactory bulbectomy in rat. Brain Res 2003; 974: 228–235.

    Article  CAS  PubMed  Google Scholar 

  83. Vermetten E, Vythilingam M, Southwick SM, Charney DS, Bremner JD . Long-term treatment with paroxetine increases verbal declarative memory and hippocampal volume in posttraumatic stress disorder. Biol Psychiatry 2003; 54: 693–702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Rose EJ, Ebmeier KP . Pattern of impaired working memory during major depression. J Affect Disord 2006; 90: 149–161.

    Article  CAS  PubMed  Google Scholar 

  85. Hasler G, Drevets WC, Manji HK, Charney DS . Discovering endophenotypes for major depression. Neuropsychopharmacology 2004; 29: 1765–1781.

    Article  CAS  PubMed  Google Scholar 

  86. Shumake J, Barrett D, Gonzalez-Lima F . Behavioral characteristics of rats predisposed to learned helplessness: reduced reward sensitivity, increased novelty seeking, and persistent fear memories. Behav Brain Res 2005; 164: 222–230.

    Article  PubMed  Google Scholar 

  87. Gurvits TV, Metzger LJ, Lasko NB, Cannistraro PA, Tarhan AS, Gilbertson MW et al. Subtle neurologic compromise as a vulnerability factor for combat-related posttraumatic stress disorder: results of a twin study. Arch Gen Psychiatry 2006; 63: 571–576.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Support was provided by NIH (MH069884, KR and MH070218, JPC), NARSAD (KR), NIH/NCRR base grant (P51RR000165) to Yerkes National Primates Research Center and the Center for Behavioral Neuroscience (NSF agreement IBN-987675). We would also like to acknowledge C Todd French, MS, for excellent technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K J Ressler.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website (http://www.nature.com/mp)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heldt, S., Stanek, L., Chhatwal, J. et al. Hippocampus-specific deletion of BDNF in adult mice impairs spatial memory and extinction of aversive memories. Mol Psychiatry 12, 656–670 (2007). https://doi.org/10.1038/sj.mp.4001957

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4001957

Keywords

This article is cited by

Search

Quick links