Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

TGFB-induced factor (TGIF): a candidate gene for psychosis on chromosome 18p

Abstract

Schizophrenia (SC) and bipolar disorder (BP) share many clinical features, among them psychosis. We previously identified a putative gene locus for psychosis on chromosome 18p in a sample from the Central Valley of Costa Rica (CVCR) population. The present study replicated the association to a specific allele of microsatellite marker D18S63 on 18p11.3, using a newly collected sample from the CVCR. A combined analysis of both samples, plus additional subjects, showed that this specific allele on D18S63, which lies within an intron on the TGFB-induced factor (TGIF) gene, is strongly associated (P-value=0.0005) with psychosis. Eleven additional SNP markers, spanning five genes in the region, were analyzed in the combined sample from the CVCR. Only the four SNPs within the TGIF gene were in strong linkage disequilibrium with D18S63 (D′=1.00). A specific haplotype for all five markers within the TGIF gene showed evidence of association (P-value=0.011) to psychosis. A second, distinct haplotype, containing a newly identified nonsynonymous polymorphism in exon 5 of the TGIF gene, showed a nonsignificant trend towards association to psychosis (P-value=0.077). TGIF is involved in neurodevelopment, neuron survival and controls the expression of dopamine receptors. Altogether, our results point to the possible involvement of TGIF in the pathophysiology of psychotic disorders in the CVCR population.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Kessler RC, McGonagle KA, Zhao S, Nelson CB, Hughes M, Eshleman S et al. Lifetime and 12-month prevalence of DSM-III-R psychiatric disorders in the United States. Results from the National Comorbidity Survey. Arch Gen Psychiatry 1994; 51: 8–19.

    Article  CAS  PubMed  Google Scholar 

  2. World Health Organization. International Classification of Diseases Tenth Revision. World Health Organization: Geneva, 1992.

  3. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders. American Psychiatric Press: Washington, DC, 2004.

  4. Craddock N, O'Donovan MC, Owen MJ . The genetics of schizophrenia and bipolar disorder: dissecting psychosis. J Med Genet 2005; 42: 193–204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bailer U, Leisch F, Meszaros K, Lenzinger E, Willinger U, Strobl R et al. Genome scan for susceptibility loci for schizophrenia and bipolar disorder. Biol Psychiatry 2002; 52: 40–52.

    Article  CAS  PubMed  Google Scholar 

  6. Crow TJ . The continuum of psychosis and its implication for the structure of the gene. Br J Psychiatry 1986; 149: 419–429.

    Article  CAS  PubMed  Google Scholar 

  7. Bentall R . Madness explained: why we must reject the Kraepelinian paradigm and replace it with a ‘complaint-orientated’ approach to understanding mental illness. Med Hypotheses 2006; 66: 220–233.

    Article  PubMed  Google Scholar 

  8. Walss-Bass C, Liu W, Lew DF, Villegas R, Montero P, Leach RJ et al. A novel missense mutation in the transmembrane domain of neuregulin 1 is associated with schizophrenia. Biol Psychiatry 2006; 60: 548–553.

    Article  CAS  PubMed  Google Scholar 

  9. Walss-Bass C, Raventos H, Montero AP, Armas R, Dassori A, Contreras S et al. Association analyses of the neuregulin 1 gene with schizophrenia and manic psychosis in a Hispanic population. Acta Psychiatr Scand 2006; 113: 314–321.

    Article  CAS  PubMed  Google Scholar 

  10. Walss-Bass C, Escamilla MA, Raventos H, Montero AP, Armas R, Dassori A et al. Evidence of genetic overlap of schizophrenia and bipolar disorder: linkage disequilibrium analysis of chromosome 18 in the Costa Rican population. Am J Med Genet B Neuropsychiatr Genet 2005; 139: 54–60.

    Article  Google Scholar 

  11. McInnes LA, Service SK, Reus VI, Barnes G, Charlat O, Jawahar S et al. Fine-scale mapping of a locus for severe bipolar mood disorder on chromosome 18p11.3 in the Costa Rican population. Proc Natl Acad Sci USA 2001; 98: 11485–11490.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Schwab SG, Hallmayer J, Lerer B, Albus M, Borrmann M, Honig S et al. Support for a chromosome 18p locus conferring susceptibility to functional psychoses in families with schizophrenia, by association and linkage analysis. Am J Hum Genet 1998; 63: 1139–1152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Faraone SV, Skol AD, Tsuang DW, Young KA, Haverstock SL, Prabhudesai S et al. Genome scan of schizophrenia families in a large Veterans Affairs Cooperative Study sample: evidence for linkage to 18p11.32 and for racial heterogeneity on chromosomes 6 and 14. Am J Med Genet B Neuropsychiatr Genet 2005; 139: 91–100.

    Article  Google Scholar 

  14. Knepper JL, James AC, Ming JE . TGIF, a gene associated with human brain defects, regulates neuronal development. Dev Dyn 2006; 235: 1482–1490.

    Article  CAS  PubMed  Google Scholar 

  15. Yang Y, Hwang CK, D'Souza UM, Lee SH, Junn E, Mouradian MM . Three-amino acid extension loop homeodomain proteins Meis2 and TGIF differentially regulate transcription. J Biol Chem 2000; 275: 20734–20741.

    Article  CAS  PubMed  Google Scholar 

  16. Escamilla MA, McInnes LA, Spesny M, Reus VI, Service SK, Shimayoshi N et al. Assessing the feasibility of linkage disequilibrium methods for mapping complex traits: an initial screen for bipolar disorder loci on chromosome 18. Am J Hum Genet 1999; 64: 1670–1678.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Escamilla MA, Ontiveros A, Nicolini H, Raventos H, Mendoza R, Medina R et al. A Genome-wide scan for schizophrenia and psychosis susceptibility loci in families of Mexican and Central American Ancestry. Am J Med Genet B Neuropsychiatr Genet 2007; 144: 193–199.

    Article  Google Scholar 

  18. Vincent JB, Petronis A, Strong E, Parikh SV, Meltzer HY, Lieberman J et al. Analysis of genome-wide CAG/CTG repeats, and at SEF2-1B and ERDA1 in schizophrenia and bipolar affective disorder. Mol Psychiatry 1999; 4: 229–234.

    Article  PubMed  Google Scholar 

  19. Schwab SG, Hallmayer J, Lerer B, Albus M, Borrmann M, Honing S et al. Support for a chromosome 18p locus conferring susceptibility to functional psychoses in families with schizophrenia, by association and linkage analysis. Am J Hum Genet 1998; 63: 1139–1152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Petronis A . The genes for major psychosis: aberrant sequence or regulation? Neuropsychopharmacology 2000; 23: 1–12.

    Article  CAS  PubMed  Google Scholar 

  21. McInnes LA, Service SK, Reus VI, Barnes G, Charlat O, Jawahar S et al. Fine-scale mapping of a locus for severe bipolar mood disorder on chromosome 18p11.3 in the Costa Rican population. Proc Natl Acad Sci USA 2001; 98: 11485–11490.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Garner C, McInnes LA, Service SK, Spesny M, Fournier E, Leon P et al. Linkage analysis of a complex pedigree with severe bipolar disorder, using a Markov chain Monte Carlo method. Am J Hum Genet 2001; 68: 1061–1064.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Freimer NB, Reus VI, Escamilla MA, McInnes LA, Spesny M, Leon P et al. Genetic mapping using haplotype, association and linkage methods suggests a locus for severe bipolar disorder (BPI) at 18q22–q23. Nat Genet 1996; 12: 436–441.

    Article  CAS  PubMed  Google Scholar 

  24. Faraone SV, Skol AD, Tsuang DW, Young KA, Haverstock SL, Prabhudesai S et al. Genome scan of schizophrenia families in a large Veterans Affairs Cooperative Study sample: evidence for linkage to 18p11.32 and for racial heterogeneity on chromosomes 6 and 14. Am J Med Genet B Neuropsychiatr Genet 2005; 139: 91–100.

    Article  Google Scholar 

  25. Escamilla MA, McInnes LA, Service SK, Spesny M, Reus VI, Molina J et al. Genome screening for linkage disequilibrium in a Costa Rican sample of patients with bipolar-I disorder: a follow-up study on chromosome 18. Am J Med Genet 2001; 105: 207–213.

    Article  CAS  PubMed  Google Scholar 

  26. Bassett AS . Chromosomal aberrations and schizophrenia. Autosomes Br J Psychiatry 1992; 161: 323–334.

    Article  CAS  PubMed  Google Scholar 

  27. Christensen KR, Friedrich U, Jacobsen P, Jensen K, Nielsen J, Tsuboi T . Ring chromosome 18 in mother and daughter. J Ment Defic Res 1970; 14: 49–67.

    CAS  PubMed  Google Scholar 

  28. Drazinic CM, Ercan-Sencicek AG, Gault LM, Hisama FM, Qumsiyeh MB, Nowak NJ et al. Rapid array-based genomic characterization of a subtle structural abnormality: a patient with psychosis and der(18)t(5;18)(p14.1;p11.23). Am J Med Genet A 2005; 134: 282–289.

    Article  PubMed  Google Scholar 

  29. Mahr RN, Moberg PJ, Overhauser J, Strathdee G, Kamholz J, Loevner LA et al. Neuropsychiatry of 18q-syndrome. Am J Med Genet 1996; 67: 172–178.

    Article  CAS  PubMed  Google Scholar 

  30. Pickard BS, Malloy MP, Clark L, Lehellard S, Ewald HL, Mors O et al. Candidate psychiatric illness genes identified in patients with pericentric inversions of chromosome 18. Psychiatr Genet 2005; 15: 37–44.

    Article  PubMed  Google Scholar 

  31. Smith AB, Peterson P, Wieland J, Moriarty T, DeLisi LE . Chromosome 18 translocation (18;21) (p11.1;p11.1) associated with psychosis in one family. Am J Med Genet 1996; 67: 560–563.

    Article  CAS  PubMed  Google Scholar 

  32. McInnes LA, Service SK, Reus VI, Barnes G, Charlat O, Jawahar S et al. Fine-scale mapping of a locus for severe bipolar mood disorder on chromosome 18p11.3 in the Costa Rican population. Proc Natl Acad Sci USA 2001; 98: 11485–11490.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Faraone SV, Skol AD, Tsuang DW, Young KA, Haverstock SL, Prabhudesai S et al. Genome scan of schizophrenia families in a large Veterans Affairs Cooperative Study sample: evidence for linkage to 18p11.32 and for racial heterogeneity on chromosomes 6 and 14. Am J Med Genet B Neuropsychiatr Genet 2005; 139: 91–100.

    Article  Google Scholar 

  34. Hefferon TW, Groman JD, Yurk CE, Cutting GR . A variable dinucleotide repeat in the CFTR gene contributes to phenotype diversity by forming RNA secondary structures that alter splicing. Proc Natl Acad Sci USA 2004; 101: 3504–3509.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Aguilella C, Dubourg C, Attia-Sobol J, Vigneron J, Blayau M, Pasquier L et al. Molecular screening of the TGIF gene in holoprosencephaly: identification of two novel mutations. Hum Genet 2003; 112: 131–134.

    CAS  PubMed  Google Scholar 

  36. Gripp KW, Wotton D, Edwards MC, Roessler E, Ades L, Meinecke P et al. Mutations in TGIF cause holoprosencephaly and link NODAL signalling to human neural axis determination. Nat Genet 2000; 25: 205–208.

    Article  CAS  PubMed  Google Scholar 

  37. Wallis D, Muenke M . Mutations in holoprosencephaly. Hum Mutat 2000; 16: 99–108.

    Article  CAS  PubMed  Google Scholar 

  38. Wallis DE, Muenke M . Molecular mechanisms of holoprosencephaly. Mol Genet Metab 1999; 68: 126–138.

    Article  CAS  PubMed  Google Scholar 

  39. Groman JD, Hefferon TW, Casals T, Bassas L, Estivill X, Des Georges M et al. Variation in a repeat sequence determines weather a common variant of cystic fibrosis transmembrane conductance regulator gene is pathogenic or benign. Am J Hum Genet 2004; 74: 176–179.

    Article  CAS  PubMed  Google Scholar 

  40. Yang Y, Hwang CK, D'Souza UM, Lee SH, Junn E, Mouradian MM . Three-amino acid extension loop homeodomain proteins Meis2 and TGIF differentially regulate transcription. J Biol Chem 2000; 275: 20734–20741.

    Article  CAS  PubMed  Google Scholar 

  41. Thomas AG, Liu W, Olkowski JL, Tang Z, Lin Q, Lu XC et al. Neuroprotection mediated by glutamate carboxypeptidase II (NAALADase) inhibition requires TGF-beta. Eur J Pharmacol 2001; 430: 33–40.

    Article  CAS  PubMed  Google Scholar 

  42. Gomes FC, Sousa VO, Romao L . Emerging roles for TGF-beta1 in nervous system development. Int J Dev Neurosci 2005; 23: 413–424.

    Article  CAS  PubMed  Google Scholar 

  43. Henrich-Noack P, Prehn JH, Krieglstein J . Neuroprotective effects of TGF-beta 1. J Neural Transm Suppl 1994; 43: 33–45.

    CAS  PubMed  Google Scholar 

  44. Blum M . A null mutation in TGF-alpha leads to a reduction in midbrain dopaminergic neurons in the substantia nigra. Nat Neurosci 1998; 1: 374–377.

    Article  CAS  PubMed  Google Scholar 

  45. Brionne TC, Tesseur I, Masliah E, Wyss-Coray T . Loss of TGF-beta 1 leads to increased neuronal cell death and microgliosis in mouse brain. Neuron 2003; 40: 1133–1145.

    Article  CAS  PubMed  Google Scholar 

  46. Krieglstein K, Maysinger D, Unsicker K . The survival response of mesencephalic dopaminergic neurons to the neurotrophins BDNF and NT-4 requires priming with serum: comparison with members of the TGF-beta superfamily and characterization of the serum-free culture system. J Neural Transm Suppl 1996; 47: 247–258.

    Article  CAS  PubMed  Google Scholar 

  47. Roussa E, Farkas LM, Krieglstein K . TGF-beta promotes survival on mesencephalic dopaminergic neurons in cooperation with Shh and FGF-8. Neurobiol Dis 2004; 16: 300–310.

    Article  CAS  PubMed  Google Scholar 

  48. Strelau J, Schober A, Sullivan A, Schilling L, Unsicker K . Growth/differentiation factor-15 (GDF-15), a novel member of the TGF-beta superfamily, promotes survival of lesioned mesencephalic dopaminergic neurons in vitro and in vivo and is induced in neurons following cortical lesioning. J Neural Transm Suppl 2003; 65: 197–203.

    Article  Google Scholar 

  49. Unsicker K, Krieglstein K . TGF-betas and their roles in the regulation of neuron survival. Adv Exp Med Biol 2002; 513: 353–374.

    Article  CAS  PubMed  Google Scholar 

  50. Lo RS, Wotton D, Massague J . Epidermal growth factor signaling via Ras controls the Smad transcriptional co-repressor TGIF. EMBO J 2001; 20: 128–136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Walss-Bass C, Liu W, Lew DF, Villegas R, Montero P, Leach RJ et al. A novel missense mutation in the transmembrane domain of neuregulin 1 is associated with schizophrenia. Biol Psychiatry 2006; 60: 548–553.

    Article  CAS  PubMed  Google Scholar 

  52. Tosato S, Dazzan P, Collier D . Association between the neuregulin 1 gene and schizophrenia: a systematic review. Schizophr Bull 2005; 31: 613–617.

    Article  PubMed  Google Scholar 

  53. Green EK, Raybould R, Macgregor S, Raybould R, Macgregor S, Gordon-Smith K et al. Operation of the schizophrenia susceptibility gene, neuregulin 1, across traditional diagnostic boundaries to increase risk for bipolar disorder. Arch Gen Psychiatry 2005; 62: 642–648.

    Article  CAS  PubMed  Google Scholar 

  54. Kampman O, Anttila S, Illi A, Saarela M, Rontu R, Mattila KM et al. Neuregulin genotype and medication response in Finnish patients with schizophrenia. NeuroReport 2004; 15: 2517–2520.

    Article  CAS  PubMed  Google Scholar 

  55. Parkinson DB, Dong Z, Bunting H, Whitfield J, Meier C, Marie H et al. Transforming growth factor beta (TGFbeta) mediates Schwann cell death in vitro and in vivo: examination of c-Jun activation, interactions with survival signals, and the relationship of TGFbeta-mediated death to Schwann cell differentiation. J Neurosci 2001; 21: 8572–8585.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Cameron JS, Lhuillier L, Subramony P, Dryer SE . Developmental regulation of neuronal K+ channels by target-derived TGF beta in vivo and in vitro. Neuron 1998; 21: 1045–1053.

    Article  CAS  PubMed  Google Scholar 

  57. Tabernero A, Stewart HJ, Jessen KR, Mirsky R . The neuron-glia signal beta neuregulin induces sustained CREB phosphorylation on Ser-133 in cultured rat Schwann cells. Mol Cell Neurosci 1998; 10: 309–322.

    Article  CAS  PubMed  Google Scholar 

  58. Lee B, Walss-Bass C, Thompson P, Dassori A, Montero PA, Medina R et al. Malic enzyme 2 and susceptibility to psychosis and mania. Psychiatry Res 2007; 150: 1–11.

    Article  CAS  PubMed  Google Scholar 

  59. Yang Y, Hwang CK, Junn E, Lee G, Mouradian MM . ZIC2 and Sp3 repress Sp1-induced activation of the human D1A dopamine receptor gene. J Biol Chem 2000; 275: 38863–38869.

    Article  CAS  PubMed  Google Scholar 

  60. Yang Y, Hwang CK, D'Souza UM, Lee SH, Junn E, Mouradian MM . Three-amino acid extension loop homeodomain proteins Meis2 and TGIF differentially regulate transcription. J Biol Chem 2000; 275: 20734–20741.

    Article  CAS  PubMed  Google Scholar 

  61. Rapoport JL, Addington AM, Frangou S, Psych MR . The neurodevelopmental model of schizophrenia: update 2005. Mol Psychiatry 2005; 10: 434–449.

    Article  CAS  PubMed  Google Scholar 

  62. de HL, Bakker JM . Overview of neuropathological theories of schizophrenia: from degeneration to progressive developmental disorder. Psychopathology 2004; 37: 1–7.

    Article  Google Scholar 

  63. Carlsson A, Carlsson ML . A dopaminergic deficit hypothesis of schizophrenia: the path to discovery. Dialogues Clin Neurosci 2006; 8: 137–142.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This project was supported in part by NIH Research Grant # D43 TW06152 funded by the Fogarty International Center, The National Institute on Drug Abuse and the National Institute of Mental Health, and by the National Institutes of Health Grant R01-MH61884.

We are indebted to the patients and family member who participated in this study. We also thank the psychiatry departments of hospitals and clinics in Costa Rica that collaborated in this project. We thank the personnel of the CIBCM at the University of Costa Rica for their assistance in collecting the samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M A Escamilla.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chavarría-Siles, I., Walss-Bass, C., Quezada, P. et al. TGFB-induced factor (TGIF): a candidate gene for psychosis on chromosome 18p. Mol Psychiatry 12, 1033–1041 (2007). https://doi.org/10.1038/sj.mp.4001997

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4001997

Keywords

Search

Quick links