Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Association between the oxytocin receptor (OXTR) gene and autism: relationship to Vineland Adaptive Behavior Scales and cognition

Abstract

Evidence both from animal and human studies suggests that common polymorphisms in the oxytocin receptor (OXTR) gene are likely candidates to confer risk for autism spectrum disorders (ASD). In lower mammals, oxytocin is important in a wide range of social behaviors, and recent human studies have shown that administration of oxytocin modulates behavior in both clinical and non-clinical groups. Additionally, two linkage studies and two recent association investigations also underscore a possible role for the OXTR gene in predisposing to ASD. We undertook a comprehensive study of all 18 tagged SNPs across the entire OXTR gene region identified using HapMap data and the Haploview algorithm. Altogether 152 subjects diagnosed with ASDs (that is, DSM IV autistic disorder or pervasive developmental disorder—NOS) from 133 families were genotyped (parents and affected siblings). Both individual SNPs and haplotypes were tested for association using family-based association tests as provided in the UNPHASED set of programs. Significant association with single SNPs and haplotypes (global P-values <0.05, following permutation test adjustment) were observed with ASD. Association was also observed with IQ and the Vineland Adaptive Behavior Scales (VABS). In particular, a five-locus haplotype block (rs237897-rs13316193-rs237889-rs2254298-rs2268494) was significantly associated with ASD (nominal global P=0.000019; adjusted global P=0.009) and a single haplotype (carried by 7% of the population) within that block showed highly significant association (P=0.00005). This is the third association study, in a third ethnic group, showing that SNPs and haplotypes in the OXTR gene confer risk for ASD. The current investigation also shows association with IQ and total VABS scores (as well as the communication, daily living skills and socialization subdomains), suggesting that this gene shapes both cognition and daily living skills that may cross diagnostic boundaries.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Engelmann M, Wotjak CT, Neumann I, Ludwig M, Landgraf R . Behavioral consequences of intracerebral vasopressin and oxytocin: focus on learning and memory. Neurosci Biobehav Rev 1996; 20: 341–358.

    Article  CAS  Google Scholar 

  2. Dantzer R, Bluthe RM, Koob GF, Le Moal M . Modulation of social memory in male rats by neurohypophyseal peptides. Psychopharmacology (Berl) 1987; 91: 363–368.

    Article  CAS  Google Scholar 

  3. Winslow JT, Insel TR . The social deficits of the oxytocin knockout mouse. Neuropeptides 2002; 36: 221–229.

    Article  CAS  Google Scholar 

  4. Winslow JT, Hearn EF, Ferguson J, Young LJ, Matzuk MM, Insel TR . Infant vocalization, adult aggression, and fear behavior of an oxytocin null mutant mouse. Horm Behav 2000; 37: 145–155.

    Article  CAS  Google Scholar 

  5. Acher R . Chemistry of the neurohypophysial hormones: an example of molecular evolution. In: Knobil E, Sawyer W (eds). Handbook of Physiology, vol. 4. American Physiological Society: Washington, DC, 1974, pp 119–130.

    Google Scholar 

  6. Lauritsen MB, Als TD, Dahl HA, Flint TJ, Wang AG, Vang M et al. A genome-wide search for alleles and haplotypes associated with autism and related pervasive developmental disorders on the Faroe Islands. Mol Psychiatry 2006; 11: 37–46.

    Article  CAS  Google Scholar 

  7. McCauley JL, Li C, Jiang L, Olson LM, Crockett G, Gainer K et al. Genome-wide and ordered-subset linkage analyses provide support for autism loci on 17q and 19p with evidence of phenotypic and interlocus genetic correlates. BMC Med Genet 2005; 6: 1.

    Article  Google Scholar 

  8. Wu S, Jia M, Ruan Y, Liu J, Guo Y, Shuang M et al. Positive association of the oxytocin receptor gene (OXTR) with autism in the Chinese Han population. Biol Psychiatry 2005; 58: 74–77.

    Article  CAS  Google Scholar 

  9. Jacob S, Brune CW, Carter CS, Leventhal BL, Lord C, Cook Jr EH . Association of the oxytocin receptor gene (OXTR) in Caucasian children and adolescents with autism. Neurosci Lett 2007; 417: 6–9.

    Article  CAS  Google Scholar 

  10. Insel TR, O'Brien DJ, Leckman JF . Oxytocin, vasopressin, and autism: is there a connection? Biol Psychiatry 1999; 45: 145–157.

    Article  CAS  Google Scholar 

  11. Landgraf R, Neumann ID . Vasopressin and oxytocin release within the brain: a dynamic concept of multiple and variable modes of neuropeptide communication. Front Neuroendocrinol 2004; 25: 150–176.

    Article  CAS  Google Scholar 

  12. Carter CS . Neuroendocrine perspectives on social attachment and love. Psychoneuroendocrinology 1998; 23: 779–818.

    Article  CAS  Google Scholar 

  13. Young LJ, Wang Z . The neurobiology of pair bonding. Nat Neurosci 2004; 7: 1048–1054.

    Article  CAS  Google Scholar 

  14. Kosfeld M, Heinrichs M, Zak PJ, Fischbacher U, Fehr E . Oxytocin increases trust in humans. Nature 2005; 435: 673–676.

    Article  CAS  Google Scholar 

  15. Heinrichs M, Meinlschmidt G, Wippich W, Ehlert U, Hellhammer DH . Selective amnesic effects of oxytocin on human memory. Physiol Behav 2004; 83: 31–38.

    Article  CAS  Google Scholar 

  16. Domes G, Heinrichs M, Michel A, Berger C, Herpertz SC . Oxytocin improves ‘mind-reading’ in humans. Biol Psychiatry 2007; 61: 731–733.

    Article  CAS  Google Scholar 

  17. Kirsch P, Esslinger C, Chen Q, Mier D, Lis S, Siddhanti S et al. Oxytocin modulates neural circuitry for social cognition and fear in humans. J Neurosci 2005; 25: 11489–11493.

    Article  CAS  Google Scholar 

  18. Hollander E, Novotny S, Hanratty M, Yaffe R, DeCaria CM, Aronowitz BR et al. Oxytocin infusion reduces repetitive behaviors in adults with autistic and Asperger's disorders. Neuropsychopharmacology 2003; 28: 193–198.

    Article  CAS  Google Scholar 

  19. Hollander E, Bartz J, Chaplin W, Phillips A, Sumner J, Soorya L et al. Oxytocin increases retention of social cognition in autism. Biol Psychiatry 2007; 61: 498–503.

    Article  CAS  Google Scholar 

  20. Modahl C, Fein D, Waterhouse L, Newton N . Does oxytocin deficiency mediate social deficits in autism? J Autism Dev Disord 1992; 22: 449–451.

    Article  CAS  Google Scholar 

  21. Green L, Fein D, Modahl C, Feinstein C, Waterhouse L, Morris M . Oxytocin and autistic disorder: alterations in peptide forms. Biol Psychiatry 2001; 50: 609–613.

    Article  CAS  Google Scholar 

  22. Modahl C, Green L, Fein D, Morris M, Waterhouse L, Feinstein C et al. Plasma oxytocin levels in autistic children. Biol Psychiatry 1998; 43: 270–277.

    Article  CAS  Google Scholar 

  23. Domes G, Heinrichs RW, Glascher J, Buchel C, Braus DF, Herpertz SC . Oxytocin attenuates amygdala responses to emotional faces regardless of valence. Biol Psychiatry 2007 [E-pub ahead of print].

  24. Gimpl G, Fahrenholz F . The oxytocin receptor system: structure, function, and regulation. Physiol Rev 2001; 81: 629–683.

    Article  CAS  Google Scholar 

  25. Inoue T, Kimura T, Azuma C, Inazawa J, Takemura M, Kikuchi T et al. Structural organization of the human oxytocin receptor gene. J Biol Chem 1994; 269: 32451–32456.

    CAS  PubMed  Google Scholar 

  26. Barrett JC, Fry B, Maller J, Daly MJ . Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 2005; 21: 263–265.

    Article  CAS  Google Scholar 

  27. Sparrow SS, Balla DA, Cicchetti DV . Vineland Adaptive Behavior Scales. American Guidance Services: Minneapolis, MN, 1984.

    Google Scholar 

  28. Haddad LA, Mingroni-Netto RC, Vianna-Morgante AM, Pena SD . A PCR-based test suitable for screening for fragile X syndrome among mentally retarded males. Hum Genet 1996; 97: 808–812.

    Article  CAS  Google Scholar 

  29. Larsen LA, Gronskov K, Norgaard-Pedersen B, Brondum-Nielsen K, Hasholt L, Vuust J . High-throughput analysis of fragile X (CGG)n alleles in the normal and premutation range by PCR amplification and automated capillary electrophoresis. Hum Genet 1997; 100: 564–568.

    Article  CAS  Google Scholar 

  30. O'Connell CD, Atha DH, Jakupciak JP, Amos JA, Richie K . Standardization of PCR amplification for fragile X trinucleotide repeat measurements. Clin Genet 2002; 61: 13–20.

    Article  CAS  Google Scholar 

  31. Lord C, Rutter M, Le Couteur A . Autism Diagnostic Interview—Revised: a revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders. J Autism Dev Disord 1994; 24: 659–685.

    Article  CAS  Google Scholar 

  32. Lord C, Risi S, Lambrecht L, Cook Jr EH, Leventhal BL, DiLavore PC et al. The autism diagnostic observation schedule—generic: a standard measure of social and communication deficits associated with the spectrum of autism. J Autism Dev Disord 2000; 30: 205–223.

    Article  CAS  Google Scholar 

  33. Risi S, Lord C, Corsello C, Chrysler C, Szatmary P, Cook EH et al. Combining information from multiple sources in the diagnosis of autism spectrum disorders. J Am Acad Child Adolesc Psychiatry 2006; 45: 1094–1103.

    Article  Google Scholar 

  34. Sparrow SS, Balla DA, Cicchetti D . Vineland Adaptive Behavior Scales, Interview Edition. American Guidance Service: Circle Pines, MN, 1984.

    Google Scholar 

  35. Wechsler D, Psychological Corporation. WISC-II. [kit] Wechsler Intelligence Scale for Children, 3rd edn. Psychological Corporation Harcourt Brace Jovanovich: San Antonio, TX, 1991.

    Google Scholar 

  36. Kaufman AS, Kaufman NL . Kaufman Assessment Battery for Children (K-ABC). American Guidance Services: Minneapolis, 1983.

    Google Scholar 

  37. Bayley N . Bayley Scales of Infant Development, 2nd edn. Harcourt Brace & Company: San Antonio, 1993.

    Google Scholar 

  38. Stutsman R . Manual for the Merrill–Palmer Scale of Mental Tests. Western Psychological Services: Los Angeles, CA, 1948.

    Google Scholar 

  39. Mullen EM . Mullen Scales of Early Learning. Western Psychological Services: Los Angeles, CA, 1997.

    Google Scholar 

  40. Cattell P . The Measurement of Intelligence of Infants and Young Children—Revised. Psychological Corporation: New York, 1960.

    Google Scholar 

  41. Roid GH, Miller LJ, Lieter RG . Leiter International Performance Scale—Revised: Examiners Manual. Stoelting: Wood Dale, IL (620 Wheat Ln., Wood Dale 60191), 1997 xiii, 1 v. (various pagings).

    Google Scholar 

  42. Thorndike RL, Hagen EP, Sattler JM . The Stanford–Binet Intelligence Scale, Fourth Edition: Guide for Administering and Scoring. Riverside Pub. Co: Chicago, IL. (8420 Bryn Mawr Avenue, Chicago 60631), 1986 192pp.

    Google Scholar 

  43. Sham PC, Curtis D . An extended transmission/disequilibrium test (TDT) for multi-allele marker loci. Ann Hum Genet 1995; 59(Part 3): 323–336.

    Article  CAS  Google Scholar 

  44. Dudbridge F . Pedigree disequilibrium tests for multilocus haplotypes. Genet Epidemiol 2003; 25: 115–121.

    Article  Google Scholar 

  45. Crawford DC, Nickerson DA . Definition and clinical importance of haplotypes. Annu Rev Med 2005; 56: 303–320.

    Article  CAS  Google Scholar 

  46. Bartz AJ, Hollander E . The neuroscience of affiliation: forging links between basic and clinical research on neuropeptides and social behavior. Horm Behav 2006; 50: 518–528.

    Article  CAS  Google Scholar 

  47. Heinrichs M, Baumgartner T, Kirschbaum C, Ehlert U . Social support and oxytocin interact to suppress cortisol and subjective responses to psychosocial stress. Biol Psychiatry 2003; 54: 1389–1398.

    Article  CAS  Google Scholar 

  48. Mizumoto Y, Kimura T, Ivell R . A genomic element within the third intron of the human oxytocin receptor gene may be involved in transcriptional suppression. Mol Cell Endocrinol 1997; 135: 129–138.

    Article  CAS  Google Scholar 

  49. de Wied D, Diamant M, Fodor M . Central nervous system effects of the neurohypophyseal hormones and related peptides. Front Neuroendocrinol 1993; 14: 251–302.

    Article  CAS  Google Scholar 

  50. Carter CS, Altemus M . Integrative functions of lactational hormones in social behavior and stress management. Ann NY Acad Sci 1997; 807: 164–174.

    Article  CAS  Google Scholar 

  51. Baron-Cohen S, Wheelwright S, Hill J, Raste Y, Plumb I . The ‘Reading the Mind in the Eyes’ Test revised version: a study with normal adults, and adults with Asperger syndrome or high-functioning autism. J Child Psychol Psychiatry 2001; 42: 241–251.

    Article  CAS  Google Scholar 

  52. Hammock EA, Young LJ . Oxytocin, vasopressin and pair bonding: implications for autism. Philos Trans R Soc Lond B Biol Sci 2006; 361: 2187–2198.

    Article  CAS  Google Scholar 

  53. Carter CS . Sex differences in oxytocin and vasopressin: implications for autism spectrum disorders? Behav Brain Res 2007; 176: 170–186.

    Article  CAS  Google Scholar 

  54. Young LJ, Pitkow LJ, Ferguson JN . Neuropeptides and social behavior: animal models relevant to autism. Mol Psychiatry 2002; 7(Suppl 2): S38–S39.

    Article  Google Scholar 

  55. Born J, Lange T, Kern W, McGregor GP, Bickel U, Fehm HL . Sniffing neuropeptides: a transnasal approach to the human brain. Nat Neurosci 2002; 5: 514–516.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was partially supported by the Israel Science Foundation founded by the Israel Academy of Sciences and Humanities (NY and RPE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R P Ebstein.

Additional information

All the authors contributed equally to the design, execution and preparation of this manuscript for publication.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lerer, E., Levi, S., Salomon, S. et al. Association between the oxytocin receptor (OXTR) gene and autism: relationship to Vineland Adaptive Behavior Scales and cognition. Mol Psychiatry 13, 980–988 (2008). https://doi.org/10.1038/sj.mp.4002087

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4002087

Keywords

This article is cited by

Search

Quick links