Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

Protein phosphatase 2A subunit assembly: the catalytic subunit carboxy terminus is important for binding cellular B subunit but not polyomavirus middle tumor antigen

Abstract

The carboxy terminus of protein phosphatase 2A (PP2A) catalytic subunit is highly conserved. Seven out of the last nine residues, including two potential in vivo phosphorylation sites, threonine 304 and tyrosine 307, are completely invariant in all known PP2As. Mutational analysis of the carboxy terminus in vivo was facilitated by efficient immunoprecipitation of trimeric PP2A holoenzyme via an epitope-tagged catalytic subunit. The results indicate that the catalytic subunit carboxy terminus is important for complex formation with the PP2A 55 kDa regulatory B subunit, but not with polyomavirus oncogene, middle tumor antigen (MT), a viral B-type regulatory subunit. Replacing catalytic subunit threonine 304 or tyrosine 307 with a negatively charged amino acid abolished binding of the B subunit to the dimeric enzyme core and altered substrate specificity. Certain other amino acid substitutions of different size and/or charge also abolished or greatly reduced B subunit binding. Substitution of alanine at position 304 or phenylalanine at position 307 did not dramatically reduce B subunit binding or phosphatase activity in vitro, yet the latter substitutions are not found in naturally occurring PP2As. Thus, the wild-type residues are important for a yet unknown function in vivo. Additionally, deleting the carboxy terminal nine amino acids inhibited binding of the B subunit to the dimeric enzyme core, indicating a requirement for one or more of these amino acids for complex formation. MT interaction with the dimeric PP2A enzyme core was not inhibited by any of these mutations. Finally, unlike B subunit, MT does not activate the phosphatase activity of the PP2A heterodimer towards cdc2-phosphorylated histone H1.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ogris, E., Gibson, D. & Pallas, D. Protein phosphatase 2A subunit assembly: the catalytic subunit carboxy terminus is important for binding cellular B subunit but not polyomavirus middle tumor antigen. Oncogene 15, 911–917 (1997). https://doi.org/10.1038/sj.onc.1201259

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1201259

Keywords

This article is cited by

Search

Quick links