Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

Protein kinase CK2 is involved in G2 arrest and apoptosis following spindle damage in epithelial cells

An Erratum to this article was published on 16 April 2002

This article has been updated

Abstract

p53 undergoes phosphorylation on several residues in response to cellular stresses that include UV and ionizing radiation, however the influence of spindle damage on this parameter is relatively unclear. Consequently, the effect of nocodazole on serine 392 phosphorylation was examined in two epithelial cell lines. We show that this process is dependent upon the stepwise activation of p38 mitogen-activated protein kinase (p38 MAPK) and protein kinase casein kinase 2 (CK2). Furthermore, this activation correlated with the biochemical regulation of the maturation-promoting factor (MPF, cdc2/cyclin B), as both DRB and antisense depletion of CK2, as well as SB203580 were associated with an inhibition of its activation in response to nocodazole. Strikingly, when the cell cycle characteristics of nocodazole treated cells were examined, we observed that depletion or inhibition of the catalytic subunit of CK2, in the presence of microtubule inhibitors, resulted in a compromise of the G2 arrest (spindle checkpoint). Furthermore, CK2-depleted, nocodazole treated cells demonstrated a dramatic reduction in the apoptotic cell fraction, confirming that these cells had been endowed with oncogenic properties. These changes were observed in both HeLa cells and HCT116 cells. We also show that this effect is dependent on the presence of functional wild-type p53, as this phenomenon is not apparent in HCT116 p53−/− cells. Collectively, our results indicate two novel roles for CK2 in the spindle checkpoint arrest, in concert with p53. Firstly, to maintain increased cyclinB/cdc2 kinase activity, as a component of G2 arrest, and secondly, a role in p53-mediated apoptosis. These findings may have implications for an improved understanding of abnormalities of the spindle checkpoint in human cancers, which is a prerequisite for defining future therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Change history

References

  • Allende JE, Allende CC . 1995 FASEB J. 9: 313–323

  • Appel K, Wagner P, Boldyreff B, Issinger OG, Montenarh M . 1995 Oncogene 11: 1971–1978

  • Atherton-Fessler S, Liu F, Gabrielli B, Lee MS, Peng CY, Piwnica-Worms H . 1994 Mol. Biol. Cell 5: 989–1001

  • Baker SJ, Markowitz S, Fearon ER, Willson JK, Vogelstein B . 1990 Science 249: 912–915

  • Bunz F, Dutriaux A, Lengauer C, Waldman T, Zhou S, Brown JP, Sedivy JM, Kinzler KW, Vogelstein B . 1998 Science 282: 1497–1501

  • Butz K, Shahabeddin L, Geinsen C, Spitkovsky D, Ullmann A, Hoppe-Seyler F . 1995 Oncogene 18: 2381–2386

  • Butz KN, Whitaker N, Denk C, Ullmann A, Geisen C, Hoppe-Seyler F . 1999 Oncogene 18: 2381–2386

  • Cahill DP, Lengauer C, Yu J, Riggins GJ, Willson JK, Markowitz SD, Kinzler KW, Vogelstein B . 1998 Nature 392: 300–330

  • Chan TA, Hermeking H, Lengauer C, Kinzler KW, Vogelstein B . 1999 Nature 401: 616–620

  • Clarke AR, Purdie CA, Harrison DJ, Morris RG., Bird CC, Hooper ML, Wyllie AH . 1993 Nature 362: 849–852

  • Cross SM, Sanchez CA, Morgan CA, Schimke MK, Ramel S, Idzerda RL, Raskind WH, Reid BJ . 1995 Science 267: 1353–1356

  • Di Leonardo A, Khan SH, Linke SP, Greco V, Seidita G, Wahl GM . 1997 Cancer Res. 57: 1013–1019

  • Dulic V, Kaufmann WK, Wilson SJ, Tlsty TD, Lees E, Harper JW, Elledge SJ, Reed SI . 1994 Cell 76: 1013–1023

  • Finlay CA, Hinds PW, Levine AJ . 1989 Cell 57: 1083–1093

  • Fiscella M, Ullrich SJ, Zambrano N, Shields MT, Lin D, Lees-Miller SP, Anderson CW, Mercer WE, Appella E . 1993 Oncogene 8: 1519–1528

  • Gotz C, Scholtes P, Prowald A, Schuster N, Nastainczyk W, Montenarh M . 1999 Mol. Cell. Biochem. 191: 111–120

  • Gu W, Roeder RG . 1997 Cell 90: 595–606

  • Hall SR, Campbell LE, Meek DW . 1996 Nucleic Acids Res. 24: 1119–1126

  • Hao M, Lowy AM, Kapoor M, Deffie A, Liu G, Lozano G . 1996 J. Biol. Chem. 271: 29380–29385

  • Haupt Y, Maya R, Kazaz A, Oren M . 1997 Nature 387: 296–299

  • Hermeking H, Lengauer C, Polyak K, He TC, Zhang L, Thiagalingam S, Kinzler KW, Vogelstein B . 1997 Mol. Cell 1: 3–11

  • Herrmann CP, Kraiss S, Montenarh M . 1991 Oncogene 6: 877–884

  • Huang C, Ma WY, Maxiner A, Sun Y, Dong Z . 1999 J. Biol. Chem. 274: 12229–12235

  • Huang LC, Clarkin KC, Wahl GM . 1996 Cancer Res. 56: 2940–2944

  • Hupp TR, Meek DW, Midgley CA, Lane DP . 1992 Cell 71: 875–886

  • Innocente SA, Abrahamson JL, Cogswell JP, Lee JM . 1999 Proc. Natl. Acad. Sci. USA 96: 2147–2152

  • Jin P, Gu Y, Morgan DO . 1996 J. Cell. Biol. 134: 963–970

  • Kapoor M, Lozano G . 1998 Proc. Natl. Acad. Sci. USA 95: 2834–2837

  • Khosravi R, Maya R, Gottlieb T, Oren M, Shiloh Y, Shkedy D . 1999 Proc. Natl. Acad. Sci. USA 96: 14973–14977

  • Ko LJ, Prives C . 1996 Genes Dev. 10: 1054–1072

  • Kubbutat MH, Jones SN, Vousden KH . 1997 Nature 387: 299–303

  • Landesman-Bollag E, Channavajhala PL, Cardiff RD, Seldin DC . 1998 Oncogene 16: 2965–2974

  • Lanni JS, Jacks T . 1998 Mol. Cell. Biol. 18: 1055–1064

  • Lees-Miller SP, Sakaguchi K, Ullrich SJ, Appella E, Anderson CW . 1992 Mol. Cell. Biol. 12: 5041–5049

  • Levine AJ . 1997 Cell 88: 323–331

  • Li X, Nicklas RB . 1995 Nature 373: 630–632

  • Liu F, Stanton JJ, Wu Z, Piwnica-Worms H . 1997 Mol. Cell. Biol. 17: 571–583

  • Lowe SW, Ruley HE, Jacks T, Housman DE . 1993 Cell 74: 957–967

  • Lu H, Taya Y, Ikeda M, Levine AJ . 1998 Proc. Natl. Acad. Sci. USA 95: 6399–6402

  • Mayo LD, Turchi JJ, Berberich SJ . 1997 Cancer Res. 57: 5013–5016

  • Meek DW, Simon S, Kikkawa U, Eckhart W . 1990 EMBO J. 9: 3253–3260

  • Minn AJ, Boise LH, Thompson CB . 1996 Genes Dev. 10: 2621–2631

  • Miyashita T, Reed JC . 1995 Cell 80: 293–299

  • Mundt M, Hupp T, Fritsche M, Merkle C, Hansen S, Lane D, Groner B . 1997 Oncogene 15: 237–244

  • Notterman D, Young S, Wainger B, Levine AJ . 1998 Oncogene 17: 2743–2751

  • Passalaris TM, Benanti JA, Gewin L, Kiyono T, Galloway DA . 1999 Mol. Cell. Biol. 19: 5872–5881

  • Pinna LA, Meggio F . 1997 Prog. Cell Cycle Res. 3: 77–97

  • Prives C, Hall PA . 1999 J. Pathol. 187: 112–126

  • Rolley N, Milner J . 1994 Oncogene 9: 3067–3070

  • Sakaguchi K, Herrera JE, Saito S, Miki T, Bustin M, Vassilev A, Anderson CW, Appella E . 1998 Genes Dev. 12: 2831–2841

  • Sayed M, Kim SO, Salh BS, Issinger OG, Pelech SL . 2000 J. Biol. Chem. 275: 16569–16573

  • Scheffner M, Huibregtse JM, Vierstra RD, Howley PM . 1993 Cell 75: 495–505

  • Shieh SY, Ikeda M, Taya Y, Prives C . 1997 Cell 91: 325–334

  • Stewart ZA, Tang LJ, Pietenpol JA . 2001 Oncogene 20: 113–124

  • Takenaka K, Moriguchi T, Nishida E . 1998 Science 280: 599–602

  • Taylor SS, McKeon F . 1997 Cell 89: 727–735

  • Ulloa L, Diaz-Nido J, Avila J . 1993 EMBO J. 12: 1633–1640

  • Ulloa L, Diaz-Nido J, Avila J . 1994 Cell. Mol. Neurobiol. 14: 407–414

  • Utrera R, Collavin L, Lazarevic D, Delia D, Schneider C . 1998 EMBO J. 17: 5015–5025

  • Vogt Sionov R, Haupt Y . 1999 Oncogene 18: 6145–6157

  • Xu X, Landesman-Bollag E, Channavajhala PL, Seldin DC . 1999 Mol. Cell. Biochem. 191: 65–74

  • Yonish-Rouach E, Resnitzky D, Lotem J, Sachs L, Kimchi A, Oren M . 1991 Nature 352: 345–347

  • Zhan Q, Antinore MJ, Wang XW, Carrier F, Smith ML, Harris CC, Fornace Jr AJ . 1999 Oncogene 18: 2892–2900

Download references

Acknowledgements

This work was supported by grants from the Cancer Research Society, and the Northwestern Society for Intestinal Research to B Salh, and the National Cancer Institute of Canada to S Pelech. M Sayed is a recipient of a Medical Research Council of Canada Doctoral Research Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baljinder Salh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sayed, M., Pelech, S., Wong, C. et al. Protein kinase CK2 is involved in G2 arrest and apoptosis following spindle damage in epithelial cells. Oncogene 20, 6994–7005 (2001). https://doi.org/10.1038/sj.onc.1204894

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1204894

Keywords

This article is cited by

Search

Quick links