Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

The putative tumor suppressor RASSF1A homodimerizes and heterodimerizes with the Ras-GTP binding protein Nore1

A Corrigendum to this article was published on 13 March 2002

Abstract

Nore and RASSF1A are noncatalytic proteins that share 50% identity over their carboxyterminal 300 AA, a segment that encompasses a putative Ras-Rap association (RA) domain. RASSF1 is expressed as several splice variants, each of which contain an RA domain, however the 340 AA RASSF1A, but not the shorter RASSF1C variant, is a putative tumor suppressor. Nore binds to Ras and several Ras-like GTPases in a GTP dependent fashion however neither RASSF1 (A or C) or the C. elegans Nore/RASSF1 homolog, T24F1.3 exhibit any interaction with Ras or six other Ras-like GTPases in a yeast two-hybrid expression assay. A low recovery of RASSF1A (but not RASSF1C) in association with RasG12V is observed however on transient expression in COS cells. Nore and RASSF1A can each efficiently homodimerize and heterodimerize with each other through their nonhomologous aminoterminal segments. Recombinant RASSF1C exhibits a much weaker ability to homodimerize or heterodimerize; thus the binding of RASSF1C to Nore is very much less than the binding of RASSF1A to Nore. The association of RASSF1A with RasG12V in COS cells appears to reflect the heterodimerization of RASSF1A with Nore, inasmuch the recovery of RASSF1A with RasG12V is increased by concurrent expression of full length Nore, and abolished by expression of Nore deleted of its RA domain. The preferential ability of RASSF1A to heterodimerize with Nore and thereby associate with Ras-like GTPases may be relevant to its putative tumor suppressor function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • Akasaka K, Tamada M, Wang F, Kariya K-i, Kikuchi A, Yamamoto M, Shirouzu M, Yokoyama S, Kataoka T . 1996 J. Biol. Chem. 271: 5353–5360

  • Avruch J, Zhang X-f, Kyriakis JM . 1994 TIBS. 19: 279–283

  • Avruch J, Khokhlatchev A, Kyriakis JM, Luo Z, Tzivion G, Vavvas D, Zhang X-f . 2001 Recent Prog. Horm. Res. 56: 127–155

  • Barr MM, Tu H, Van Aelst L, Wigler M . 1996 Mol. Cell. Biol. 16: 5597–5603

  • Dammann R, Li C, Yoon J-H, Chin PL, Bates S, Pfeifer DP . 2000 Nat. Genet. 25: 315–319

  • Durfee T, Becherer K, Chen P, Yeh SH, Yan Y, Kilurn AE, Lee WH, Elledge SJ . 1993 Genes Dev. 7: 555–569

  • Ehrhardt GRA, Korherr C, Wieler JS, Knaus M, Schrader JW . 2001 Oncogene 20: 188–197

  • Feig LA, Cantor T, Cantor S . 1996 Trends Biochem. Sci. 11: 438–431

  • Gotz RA, Ehrhardt LKB, Lee F, Wieler JS, Schrader JW . 1999 Blood 94: 2433–2444

  • Han L, Wong D, Dhaka A, Afar D, White M, Xie W, Herschman H, Witte O, Colicelli J . 1997 Proc. Natl. Acad. Sci. USA 94: 494–4959

  • Huang L, Weng X, Hofer F, Martin GS, Kim SH . 1997 Nat. Struct. Biol. 4: 609–615

  • Inouye K, Mizutani S, Koide H, Kaziro Y . 2000 J. Biol. Chem. 275: 3738–3740

  • Kalhammer G, Bahler M, Schmits M, Schmitz F, Jockel J, Block C . 1997 FEBS. 414: 599–602

  • Keikhoft E, Rapp UR . 1998 Oncogene 17: 1457–1462

  • Kelley GG, Reks SE, Ondrako JM, Smrcka AV . 2001 EMBO J. 20: 743–754

  • Kuriyama M, Harada N, Kuroda S, Yamamoto T, Nakafuku M, Iwamatsu A, Yamoto D, Prasad R, Croce C, Canaani E . 1996 J. Biol. Chem. 271: 607–610

  • Lerman MI, Minna JD . 2000 Cancer Res. 60: 6116–6133

  • Luo Z, Tzivion G, Belshaw PJ, Marshall M, Avruch J . 1996 Nature 383: 181–185

  • Morrison DK, Cutler Jr RE . 1997 Curr. Opin. Cell Biol. 274: 174–179

  • Nassar N, Horn G, Herrmann C, Scherer A, McCormick F, Wittinghofer A . 1995 Nature 375: 554–560

  • Ohba Y, Mochizuki N, Yamashita S, Chan AM, Schrader JW, Hattori S, Nagashima K, Matsuda M . 2000 J. Biol. Chem. 275: 20020–20026

  • Ponting CP, Benjamin DR . 1996 TIBS. 21: 422–425

  • Quilliam LA, Castro AF, Rogers-Graham KS, Martin CB, Der CJ, Bi C . 1999 J. Biol. Chem. 274: 23850–23857

  • Reuther GW, Der CJ . 2000 Curr. Biol. 12: 157–165

  • Rodriquez-Viciana P, Warne PH, Dhand R, Vanhaesebroeck B, Gout I, Fry MJ, Waterfield MD, Downward J . 1994 Nature 370: 527–532

  • Rodriquez-Viciana P, Warne PH, Khwaja A, Marte BM, Pappin D, Das P, Waterfield MD, Ridley A, Downward J . 1997 Cell 89: 457–467

  • Rodriquez-Viciana P, Warne PH, Vanhaesebroeck B, Waterfield MD, Downward J . 1996 EMBO J. 15: 2442–2451

  • Rubin GM, Yandell MD, Wortman JR, Gabor Miklos GL, Nelson CR, Hariharan IK, Fortini ME, Li PW, Apweiler R, Fleischmann W, Cherry JM, Henikoff S, Skupski MP, Misra S, Ashurner M, Birney W, Boguski MS, Brody T, Brokstein P, Celniker SE, Chervitz SA, Coates D, Cravchik A, Gabrielian A, Galle RF, Gelbart WM, George RA, Goldstein LSB, Gong F, Guan P, Harris NL, Hay BA, Hoskins RA, Li J, Li Z, Hynes RO, Jones SJM, Kuehl PM, Lamaitre B, Littleton JT, Morrison DK, Mungall C, O'Farrell PH, Pickeral OK, Shue C, Vosshall LB, Zhang J, Zhao Q, Zheng ZH, Zhong F, Zhong W, Gibbs R, Vener JC, Adams MD, Lewis S . 2000 Science 287: 2204–2215

  • Shibatohge M, Kariya K, Liao Y, Hu C-D, Watari Y, Goshima M, Shima F, Kataoka T . 1998 J. Biol. Chem. 273: 6218–6222

  • Shields JM, Pruitt K, McFall A, Shaub A, Der CJ . 2000 Cell. Biol. 4: 147–154

  • Shima F, Yamawaki-Kataoka Y, Yanagihara C, Tamada M, Okada T, Kariya K-i, Kataoka T . 1997 Mol. Cell. Biol. 17: 1057–1064

  • Stewart S, Guan KL . 2000 J. Biol. Chem. 275: 8854–8862

  • Song C, Hu C-D, Masago M, Kariya K-i, Yamawaki-Kataoka Y, Shibatohge M, Wu D, Satoh T, Kataoka T . 2001 J. Biol. Chem. 276: 2752–2757

  • Vavvas D, Li X, Avruch J, Zhang X-f . 1998 J. Biol. Chem. 273: 5439–5442

  • Vos MD, Ellis CA, Bell A, Birrer MJ, Clark GJ . 2000 J. Biol. Chem. 275: 35669–35672

  • White MA, Vale T, Chamonis JH, Schaefer E, Wigler MHL . 1996 J. Biol. Chem. 271: 16439–16442

  • Wolthuis RM, Bos JL . 1999 Curr. Opin. Genet. Dev. 1: 112–117

  • Zhang Z, Wang Y, Vikis HG, Johnson L, Liu G, Li J, Anderson MW, Sills RC, Hong HL, Devereux TR, Jacks T, Guan K-L, You M . 2001 Nat. Genet. 29: 25–33

Download references

Acknowledgements

We thank Lawrence Quilliam for M-Ras constructs, and Christian Herrmann for Rap 2A, TC21 and R-Ras. Chris Ponting provided helpful discussion. S Ortiz-Vega is supported by NIH T32DK07028. A Khokhlatchev is supported by the Leukemia and Lymphoma Society of America. GP Pfeifer was supported by a grant from the University of California Tobacco Related Disease Research Program (9RT-0175).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph Avruch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ortiz-Vega, S., Khokhlatchev, A., Nedwidek, M. et al. The putative tumor suppressor RASSF1A homodimerizes and heterodimerizes with the Ras-GTP binding protein Nore1. Oncogene 21, 1381–1390 (2002). https://doi.org/10.1038/sj.onc.1205192

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1205192

Keywords

This article is cited by

Search

Quick links