Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

The tumor suppressor protein p53 stimulates the formation of the human topoisomerase I double cleavage complex in vitro

Abstract

Previous studies have shown that human topoisomerase I interacts directly with the tumor-suppressor protein p53. In the past few years it has repeatedly been suggested that topoisomerase I and p53 may play a joint role in the response to genotoxic stress. This led to the suggestion that p53 and human topoisomerase I may cooperate in the process of DNA repair and/or apoptosis. Recently we have demonstrated that a human topoisomerase I cleavage complex can be recognized by an additional topoisomerase I molecule and thereby form a so-called double cleavage complex. The double cleavage complex creates an about 13 nucleotides long single-stranded gap that may provide an entry site for recombinational repair events. Here we demonstrate that p53 stimulates both the DNA relaxation activity as well as the formation of the human topoisomerase I double cleavage complex by at least a factor of six. Stimulation of topoisomerase I activity by p53 is mediated via the central part of topoisomerase I. We also show that human, bovine, and murine p53 stimulate human topoisomerase I relaxation activity equally well. From these results it is conceivable that p53's stimulatory activity on topoisomerase I may play a role in DNA recombination and repair as well as in apoptosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Albor A, Kulesz-Martin M . 2000 DNA Alterations in Cancer Ehrlich M (ed) Natrick MA: Eaton Publishing pp. 409–422

  • Albor A, Kaku S, Kulesz-Martin M . 1998 Cancer Res. 58: 2091–2094

  • Andersen AH, Bendixen C, Westergaard O . 1996 DNA Replication in Eukaryotic Cells DePamphilis ML (ed) Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press pp. 587–617

  • Bischoff JR, Friedman PN, Marshak DR, Prives C, Beach D . 1990 Proc. Natl. Acad. Sci. USA 87: 4766–4770

  • Bradford MM . 1976 Anal. Biochem. 72: 248–254

  • Cao Y, Gao Q, Wazer DE, Band V . 1997 Cancer Res. 57: 5584–5589

  • Christiansen K, Westergaard O . 1999 Biochim. Biophys. Acta. 1489: 249–262

  • Degtyareva N, Subramanian D, Griffith JD . 2001 J. Biol. Chem. 276: 8778–8784

  • Dequiedt F, Willems L, Burny A, Kettmann R . 1995 DNA Seq. 5: 261–264

  • Friedman PN, Chen X, Bargonetti J, Prives C . 1993 Proc. Natl. Acad. Sci. USA 90: 3319–3323

  • Frosina G, Rossi O . 1992 Carcinogenesis 13: 1371–1377

  • Gobert C, Bracco L, Rossi F, Olivier M, Tazi J, Lavelle F, Larsen AK, Riou JF . 1996 Biochemistry 35: 5778–5786

  • Gobert C, Skladanowski A, Larsen AK . 1999 Proc. Natl. Acad. Sci. USA 96: 10355–10360

  • Haluska Jr P, Saleem A, Edwards TK, Rubin EH . 1998 Nucleic. Acids Res. 26: 1841–1847

  • Haluska Jr P, Saleem A, Rasheed Z, Ahmed F, Su EW, Liu LF, Rubin EH . 1999 Nucleic. Acids Res. 27: 2538–2544

  • Jayaraman L, Prives C . 1999 Cell. Mol. Life Sci. 55: 76–87

  • Jones JC, Stevnsner T, Mattern MR, Bohr VA . 1991 Mutat. Res. 255: 155–162

  • Labourier E, Rossi F, Gallouzi IE, Allemand E, Divita G, Tazi J . 1998 Nucleic. Acids Res. 26: 2955–2962

  • Lane DP . 1992 Nature 358: 15–16

  • Lanza A, Tornaletti S, Rodolfo C, Scanavini MC, Pedrini AM . 1996 J. Biol. Chem. 271: 6978–6986

  • Lee S, Elenbaas B, Levine A, Griffith J . 1995 Cell 81: 1013–1020

  • Mao Y, Mehl IR, Muller MT . 2002 Proc. Natl. Acad. Sci. USA 99: 1235–1240

  • Mao Y, Okada S, Chang LS, Muller MT . 2000 Cancer Res. 60: 4538–4543

  • May P, May E . 1999 Oncogene 18: 7621–7636

  • Megonigal MD, Fertala J, Bjornsti M-A . 1997 J. Biol. Chem. 272: 12801–12808

  • Pouliot JJ, Robertson CA, Nash HA . 2001 Genes Cells. 6: 677–687

  • Pouliot JJ, Yao KC, Robertson CA, Nash HA . 1999 Science 286: 552–555

  • Pourquier P, Ueng L-M, Fertala J, Wang D, Park H-J, Essigman JM, Bjornsti M-A, Pommier Y . 1999 J. Biol. Chem. 274: 8516–8523

  • Pourquier P, Ueng L-M, Kohlhagen G, Mazumder A, Gupta M, Kohn KW, Pommier Y . 1997a J. Biol. Chem. 272: 7792–7796

  • Pourquier P, Pilon AA, Kohlhagen G, Mazumder A, Sharma A, Pommier Y . 1997b J. Biol. Chem. 272: 26441–26447

  • Pourquier P, Takebayashi Y, Urasaki Y, Gioffre C, Kohlhagen G, Pommier Y . 2000 Proc. Natl. Acad. Sci. USA 97: 1885–1890

  • Pourquier P, Waltman JL, Urasaki Y, Loktionova NA, Pegg AE, Nitiss JL, Pommier Y . 2001 Cancer Res. 61: 53–58

  • Ryan AJ, Squires S, Strutt HL, Johnson RT . 1991 Nucleic. Acids Res. 19: 3295–3300

  • Sigal A, Rotter V . 2000 Cancer Res. 60: 6788–6793

  • Snapka RM, Powelson MA, Strayer JM . 1988 Mol. Cell. Biol. 8: 515–521

  • Søe K, Dianov G, Nasheuer H-P, Bohr VA, Grosse F, Stevnsner T . 2001 Nucleic. Acids Res. 29: 3195–3203

  • Squires S, Ryan AJ, Strutt HL, Smith PJ, Johnson RT . 1991 J. Cell. Sci. 100: 883–893

  • Stevnsner T, Bohr VA . 1993 Carcinogenesis 14: 1841–1850

  • Stewart AF, Herrera RE, Nordheim A . 1990 Cell 60: 141–149

  • Stewart AF, Schutz G . 1987 Cell 50: 1109–1117

  • Stewart L, Ireton GC, Champoux JJ . 1996 J. Biol. Chem. 271: 7602–7608

  • Stürzbecher HW, Brain R, Addison C, Rudge K, Remm M, Grimaldi M, Keenan E, Jenkins JR . 1992 Oncogene 7: 1513–1523

  • Subramanian D, Rosenstein BS, Muller MT . 1998 Cancer Res. 58: 976–984

  • Thielmann HW, Popanda O, Gersbach H, Gilberg F . 1993 Carcinogenesis 14: 2341–2351

  • Tsao Y-P, Russo A, Nyamuswa G, Silber R, Liu LF . 1993 Cancer Res. 53: 5908–5914

  • Vogelstein B, Kinzler KW . 1992 Cell 70: 523–526

  • Wang Y, Reed M, Wang P, Stenger JE, Mayr G, Anderson ME, Schwedes JF, Tegtmeyer P . 1993 Genes Dev. 7: 2575–2586

  • Weisshart K, Förster H, Kremmer E, Schlott B, Grosse F, Nasheuer HP . 2000 J. Biol. Chem. 275: 17328–17337

  • Wood RD, Biggerstaff M, Shivji MKK . 1995 Methods: A Companion to Methods Enzymol. 7: 163–175

  • Wu J, Liu LF . 1997 Nucleic. Acids Res. 25: 4181–4186

  • Yang SW, Burgin Jr AB, Huizenga BN, Robertson CA, Yao KC, Nash HA . 1996 Proc. Natl. Acad. Sci. USA 93: 11534–11539

  • Yang L, Wold MS, Li JJ, Kelly TJ, Liu LF . 1987 Proc. Natl. Acad. Sci. 84: 950–954

Download references

Acknowledgements

We wish to thank the undergraduate students Michael Stilmann and Falk Remane for purification of htopoI used in the Far-Western analysis. This work was sponsored by the Deutsche Krebshilfe.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Grosse.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Søe, K., Hartmann, H., Schlott, B. et al. The tumor suppressor protein p53 stimulates the formation of the human topoisomerase I double cleavage complex in vitro. Oncogene 21, 6614–6623 (2002). https://doi.org/10.1038/sj.onc.1205912

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1205912

Keywords

This article is cited by

Search

Quick links