Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

Protein kinase CK2 regulates CDC25B phosphatase activity

Abstract

Human dual-specificity phosphatases CDC25 (A, B and C) play an important role in the control of cell cycle progression by activating the cyclin-dependent kinases (CDKs). Regulation of these phosphatases during the cell cycle involves post-translational modifications such as phosphorylation and protein–protein interactions. Given the suspected involvement of the protein kinase CK2 at the G2/M transition, we have investigated its effects on the CDC25B phosphatase. We show that in vitro CK2 phosphorylates CDC25B, but not CDC25C. Mass spectrometry analysis demonstrates that at least two serine residues, Ser-186 and Ser-187, are phosphorylated in vivo. We also report that CDC25B interacts with CK2, and this interaction, mediated by the CK2β regulatory subunit, involves domains that are located within the first 55 amino acids of CK2β and between amino acids 122 and 200 on CDC25B. This association was confirmed in vivo, in Sf9 insect cells and in U2OS human cells expressing an HA epitope-tagged CDC25B. Finally, we demonstrate that phosphorylation of CDC25B by protein kinase CK2 increases the catalytic activity of the phosphatase in vitro as well as in vivo. We discuss the possibility that CDC25B phosphorylation by CK2 could play a role in the regulation of the activity of CDC25B as a starter of mitosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Allende JE and Allende CC . (1995). FASEB J., 9, 313–323.

  • Baldin V . (2000). Progress in Cell Cycle Research. Meijer L, Jézéquel A, Ducommun B. (ed). Plenum Press: New York, USA, pp. 49–60.

    Book  Google Scholar 

  • Baldin V, Cans C, Knibiehler M and Ducommun B . (1997a). J. Biol. Chem., 272, 32731–32735.

  • Baldin V, Cans C, Superti-Furga G and Ducommun B . (1997b). Oncogene, 14, 2485–2495.

  • Baldin V, Lukas J, Marcote MJ, Pagano M and Draetta G . (1993). Genes & Dev., 7, 812–821.

  • Baldin V, Pelpel K, Cazales M, Cans C and Ducommun B . (2002). J. Biol. Chem., 9, 9.

  • Bidwai AP, Hanna DE and Glover CV . (1992). J. Biol. Chem., 267, 18790–18796.

  • Biemann K . (1990). Methods Enzymol., 193, 886–887.

  • Blomberg I and Hoffmann I . (1999). Mol. Cell. Biol., 19, 6183–6194.

  • Bonnet H, Filhol O, Truchet I, Brethenou P, Cochet C, Amalric F and Bouche G . (1996). J. Biol. Chem., 271, 24781–24787.

  • Bosc DG, Slominski E, Sichler C and Litchfield DW . (1995). J. Biol. Chem., 270, 25872–25878.

  • Cans C, Sert V, Derycke J, Baldin V and Ducommun B . (1999). AntiCancer Research, 19, 1241–1244.

  • Chantalat L, Leroy D, Filhol O, Nueda A, Benitez MJ, Chambaz EM, Cochet C and Dideberg O . (1999). Embo J., 18, 2930–2940.

  • Dalal SN, Schweitzer CM and DeCaprio JA . (1999). Mol. Cell. Biol., 19, 4465–4479.

  • Davezac N, Ducommun B and Baldin V . (2000). Pathol. Biol., 48, 182–189.

  • Eng J, McCormack AL and Yates JR . (1994). Am. Soc. Mass Spectrom., 5, 976–989.

  • Escargueil AE, Plisov SY, Filhol O, Cochet C and Larsen AK . (2000). J. Biol. Chem., 275, 34710–34718.

  • Falck J, Mailand N, Syljuasen RG, Bartek J and Lukas J . (2001). Nature, 410, 842–847.

  • Filhol O, Baudier J, Delphin C, Loue-Mackenbach P, Chambaz EM and Cochet C . (1992). J. Biol. Chem., 267, 20577–20583.

  • Filhol O, Cochet C, Loue-Mackenbach P and Chambaz EM . (1994). Biochem. Biophys. Res. Commun., 198, 660–665.

  • Filhol O, Cochet C, Wedegaertner P, Gill GN and Chambaz EM . (1991). Biochemistry, 30, 11133–11140.

  • Filhol-Cochet O, Loue-Mackenbach P, Cochet C and Chambaz EM . (1994). Cell. Mol. Biol. Res., 40, 529–537.

  • Ford HL, Landesman-Bollag E, Dacwag CS, Stukenberg PT, Pardee AB and Seldin DC . (2000). J. Biol. Chem., 275, 22245–22254.

  • Forrest AR, McCormack AK, DeSouza CP, Sinnamon JM, Tonks ID, Hayward NK, Ellem KA and Gabrielli BG . (1999). Biochem. Biophys. Res. Commun., 260, 510–515.

  • Gabrielli BG, De Souza CPC, Tonks ID, Clarck JM, Hatward NK and Ellem KAO . (1996). J. Cell. Sci., 109, 1081–1093.

  • Galaktionov K and Beach D . (1991). Cell, 67, 1181–1194.

  • Garner-Hamrick PA and Fisher C . (1998). Int. J. Cancer, 76, 720–728.

  • Gotz C, Kartarius S, Scholtes P and Montenarh M . (2000). Biochem. Biophys. Res. Commun., 268, 882–885.

  • Graves PR, Lovly CM, Uy GL and Piwnica-Worms H . (2001). Oncogene, 20, 1839–1851.

  • Hanna DE, Rethinaswamy A and Glover CVC . (1995). J. Biol. Chem., 270, 25905–25914.

  • Heriche JK, Lebrin F, Rabilloud T, Leroy D, Chambaz EM and Golberg Y . (1997). Science, 276, 952–955.

  • Hoffmann I, Clarke P, Marcote MJ, Karsenti E and Draetta G . (1993). EMBO J., 12, 53–63.

  • Hoffmann I, Draetta GF and Karsenti E . (1994). EMBO J., 13, 4302–4310.

  • Jinno S, Suto K, Nagata A, Igashari M, Kanaoka Y, Nojima H and Okayama H . (1994). EMBO J., 13, 1549–1556.

  • Karlsson C, Katich S, Hagting A, Hoffmann I and Pines J . (1999). J. Cell. Biol., 146, 573–584.

  • Lammer C, Wagerer S, Saffrich R, Mertens D, Ansorge W and Hoffman I . (1998). J. Cell Sci., 111, 2445–2453.

  • Leroy D, Alghisi GC, Roberts E, Filhol-Cochet O and Gasser SM . (1999). Mol. Cell. Biochem., 191,85–95.

  • Li D, Dobrowolska G, Aicher LD, Chen M, Wright JH, Drueckes P, Dunphy EL and Munar ES . (1999). J. Biol. Chem., 274, 32988–32996.

  • Li D, Meier UT, Dobrowolska G and Krebs EG . (1997a). J. Biol. Chem., 272, 3773–3779.

  • Li J, Meyer AN and Donoghue DJ . (1997b). Proc. Natl. Acad. Sci. USA, 94, 502–507.

  • Lin WJ, Tuazon PT and Traugh JA . (1991). J. Biol. Chem., 266, 5664–5669.

  • Litchfield DW, Luscher B, Lozeman FJ, Eisenman RN and Krebs EG . (1992). J. Biol. Chem., 267, 13943–13951.

  • Lorenz P, Ackermann K, Simoes-Wuest P and Pyerin W . (1999). FEBS Lett., 448, 283–288.

  • Mann M, Hendrickson RC and Pandey A . (2001). Annu. Rev. Biochem., 70, 437–473.

  • Matsuoka S, Huang M and Elledge SJ . (1998). Science, 282, 1893–1897.

  • McLachlin DT and Chait BT . (2001). Curr. Opin. Chem. Biol., 5, 591–602.

  • Mils V, Baldin V, Goubin F, Pinta I, Papin C, Waye M, Eychene A and Ducommun B . (2000). Oncogene, 19, 1257–1265.

  • Mulner-Lorillon O, Marot J, Cayla X, Pouhle R and Belle R . (1988). Eur. J. Biochem., 171, 107–117.

  • Muslin AJ, Tanner JW, Allen PM and Shaw AS . (1996). Cell, 84, 889–897.

  • Nagata A, Igarashi M, Jinno S, Suto K and Okayama H . (1991). New Biologist, 3, 959–968.

  • Nambirajan S, Radha V, Kamatkar S and Swarup G . (2000). J. Biosci., 25, 33–40.

  • Nastainczyk W, Schmidt-Spaniol I, Boldyreff B and Issinger OG . (1995). Hybridoma, 14, 335–339.

  • Padmanabha R, Chen-Wu JL, Hanna DE and Glover CV . (1990). Mol. Cell. Biol., 10, 4089–4099.

  • Peng CY, Graves PR, Ogg S, Thoma RS, Byrnes 3rd MJ, Wu Z, Stephenson MT and Piwnica-Worms H . (1998). Cell Growth Differ., 9, 197–208.

  • Pepperkok R, Lorenz P, Ansorge W and Pyerin W . (1994). J. Biol. Chem., 269, 6986–6991.

  • Pinna LA, Meggio F . (1997). Progress in Cell Cycle Research. Meijer, L., Guidet, S. and Philippe, M. (eds). Plenum Press: New York, USA, pp. 77–98.

    Book  Google Scholar 

  • Raman C, Kuo A, Deshane J, Litchfield DW and Kimberly RP . (1998). J. Biol. Chem., 273, 19183–19189.

  • Rethinaswamy A, Birnbaum M and Glover CVC . (1998). J. Biol. Chem., 273, 5869–5877.

  • Reynolds RA, Yem AW, Wolfe CL, Deibel Jr MR, Chidester CG and Watenpaugh KD . (1999). J. Mol. Biol., 293, 559–568.

  • Rice R, Rusnak JM, Yokokawa F, Yokokawa S, Messner DJ, Boynton AL, Wipf P and Lazo JS . (1997). Biochemistry, 36, 15965–15974.

  • Robitzki A, Bodenbach L, Voss H and Pyerin W . (1993). J. Biol. Chem., 268, 5694–5702.

  • Romero-Oliva F and Allende JE . (2001). J. Cell. Biochem., 81, 445–452.

  • Roshak AK, Capper EA, Imburgia C, Fornwald J, Scott G and Marshall LA . (2000). Cell. Signal, 12, 405–411.

  • Russo GL, Vandenberg MT, Yu IJ, Bae YS, Franza Jr BR and Marshak DR . (1992). J. Biol. Chem., 267, 20317–20325.

  • Sadhu K, Reed SI, Richardson H and Russell P . (1990). Proc. Natl. Acad. Sci. USA, 87, 5139–5143.

  • Sanchez Y, Wong C, Thoma RS, Richman R, Wu Z, Piwnica-Worms H and Elledge SJ . (1997). Science, 277, 1497–1501.

  • Schulman BA, Lindstrom DL and Harlow E . (1998). Proc. Natl. Acad. Sci. USA, 95, 10453–10458.

  • Smith D and Johnson K . (1988). Gene, 67, 31–40.

  • Snell V and Nurse P . (1994). EMBO J., 13, 2066–2074.

  • Wilm M, Shevchenko A, Houthaeve T, Breit S, Schweigerer L, Fotsis T and Mann M . (1996). Nature, 379, 466–469.

  • Zandomeni R, Carrera-Zandomeni M, Shugar D and Weinmann R . (1986). J. Biol. Chem., 261, 3414–3419.

Download references

Acknowledgements

We thank JM Blanchard, JM Darbon and J Smith for comments on the manuscript and Euralis Génétique for technical assistance. This work was supported by the CNRS, l'Université Paul Sabatier, la Fondation pour la Recherche Médicale (FRM), le pôle ARECA-Protéomique Cancer et la Ligue Nationale contre le Cancer. NT-F was supported by a MENRT fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Véronique Baldin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Theis-Febvre, N., Filhol, O., Froment, C. et al. Protein kinase CK2 regulates CDC25B phosphatase activity. Oncogene 22, 220–232 (2003). https://doi.org/10.1038/sj.onc.1206107

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1206107

Keywords

This article is cited by

Search

Quick links