Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

Activation of β-catenin in prostate epithelium induces hyperplasias and squamous transdifferentiation

Abstract

The Wnt/β-catenin signaling pathway is critical for normal mammalian development, the specification of epidermal cells and neoplastic transformation of intestinal epithelium. However, precise molecular information regarding cell-specific responses to β-catenin signaling has been limited. This question was addressed using a mouse model in which exon 3 of the β-catenin gene was deleted in several cell types with loxP-mediated recombination utilizing a Cre transgene under control of the mouse mammary tumor virus-long terminal repeat (MMTV-LTR). The stabilization of β-catenin in prostate epithelium resulted in hyperplasias and extensive transdifferentiation into epidermal-like structures, which expressed keratins 1 and 6, filaggrin, loricrin and involucrin. The cell-specific loss of NKCC1 protein and reduced nuclear Stat5a is further suggestive of a loss of prostate epithelial characteristics. In addition to the prostate, hyperplasias and squamous metaplasias were detected in epithelia of the epididymis, vas deferens, coagulating gland, preputial gland and salivary gland. However, and in contrast to a recent study, no lesions reminiscent of high-grade prostate intraepithelial neoplasia were detected. Since β-catenin was activated in several cell types and impinged upon the viability of these mice, it was not possible to evaluate the cumulative effect over more than 3 months. To assess long-term consequences of β-catenin activation, mutant and control prostate tissues were transplanted into the mammary fat pads of wild-type males. Notably, squamous metaplasias, intra-acinous hyperplasia and possible neoplastic transformation were observed after a total of 18 weeks of β-catenin stimulation. This suggests that the transdifferentiation into squamous metaplasias is an early response of endoderm-derived cells to β-catenin, and that the development of intra-acinous hyperplasias or neoplastic foci is a later event.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Abbreviations

EST:

expressed sequence tag

LTR:

long terminal repeat

MMP:

matrix metalloproteinase

MMTV:

mouse mammary tumor virus

Stat:

signal transducer and activator of transcription

References

  • Achtstatter T, Moll R, Moore B and Franke WW . (1985). J. Histochem. Cytochem., 33, 415–426.

  • Alberts AS and Treisman R . (1998). EMBO J., 17, 4075–4085.

    Article  CAS  Google Scholar 

  • Barresi G and Tuccari G . (1984). Virchows Arch. A., 403, 59–66.

  • Baruch RR, Melinscak H, Lo J, Liu Y, Yeung O and Hurta RA . (2001). Cell Biol. Int., 25, 411–420.

  • Brault V, Moore R, Kutsch S, Ishibashi M, Rowitch DH, McMahon AP, Sommer L, Boussadia O and Kemler R . (2001). Development, 128, 1253–1264.

  • Chesire DR, Ewing CM, Gage WR and Isaacs WB . (2002). Oncogene, 21, 2679–2694.

    Article  CAS  Google Scholar 

  • Chesire DR, Ewing CM, Sauvageot J, Bova GS and Isaacs WB . (2000). Prostate, 45, 323–334.

    Article  CAS  Google Scholar 

  • de Lau W and Clevers H . (2001). Nat. Genet., 28, 3–4.

  • DeOme KB, Faulkin Jr LJ, Bern HA and Blair PE . (1959). Cancer Res., 19, 515–520.

  • Fischer DF, van Drunen CM, Winkler GS, van de Putte P and Backendorf C . (1998). Nucleic Acids Res., 26, 5288–5294.

  • Fuchs E and Byrne C . (1994). Curr. Opin. Genet. Dev., 4, 725–736.

  • Gat U, DasGupta R, Degenstein L and Fuchs E . (1998). Cell, 95, 605–614.

    Article  CAS  Google Scholar 

  • Gerstein AV, Almeida TA, Zhao G, Chess E, Shih Ie M, Buhler K, Pienta K, Rubin MA, Vessella R and Papadopoulos N . (2002). Genes Chromosomes Cancer, 34, 9–16.

  • Gounari F, Signoretti S, Bronson R, Klein L, Sellers WR, Kum J, Siermann A, Taketo MM, von Boehmer H and Khazaie K . (2002). Oncogene, 21, 4099–4107.

    Article  CAS  Google Scholar 

  • Haegel H, Larue L, Ohsugi M, Fedorov L, Herrenknecht K and Kemler R . (1995). Development, 121, 3529–3537.

  • Harada N, Miyoshi H, Murai N, Oshima H, Tamai Y, Oshima M and Taketo MM . (2002). Cancer Res., 62, 1971–1977.

  • Harada N, Tamai Y, Ishikawa T, Sauer B, Takaku K, Oshima M and Taketo MM . (1999). EMBO J., 18, 5931–5942.

  • Hovanes K, Li TW, Munguia JE, Truong T, Milovanovic T, Lawrence Marsh J, Holcombe RF and Waterman ML . (2001). Nat. Genet., 28, 53–57.

    CAS  PubMed  Google Scholar 

  • Huelsken J and Birchmeier W . (2001). Curr. Opin. Genet. Dev., 11, 547–553.

  • Huelsken J, Vogel R, Brinkmann V, Erdmann B, Birchmeier C and Birchmeier W . (2000). J. Cell Biol., 148, 567–578.

  • Huelsken J, Vogel R, Erdmann B, Cotsarelis G and Birchmeier W . (2001). Cell, 105, 533–545.

    Article  CAS  Google Scholar 

  • Humphreys RC and Hennighausen L . (1999). Cell Growth Differ., 10, 685–694.

  • Kallakury BV, Karikehalli S, Haholu A, Sheehan CE, Azumi N and Ross JS . (2001). Clin. Cancer Res., 7, 3113–3119.

  • Kondo M, Scherer DC, Miyamoto T, King AG, Akashi K, Sugamura K and Weissman IL (2000). Nature, 407, 383–386.

    Article  CAS  Google Scholar 

  • Krempler A, Henry MD, Triplet AA and Wagner KU . (2002). J. Biol. Chem., 277, 43216–43223.

    Article  CAS  Google Scholar 

  • Li XF, Thinakaran G, Sisodia SS and Yu FS . (1999). J. Biol. Chem., 274, 27249–27256.

    Article  CAS  Google Scholar 

  • Liu X, Robinson GW and Hennighausen L . (1996). Mol. Endocrinol., 10, 1496–1506.

  • Liu X, Robinson GW, Wagner KU, Garrett L, Wynshaw-Boris A and Hennighausen L . (1997). Genes Dev., 11, 179–186.

  • McCrea PD, Turck CW and Gumbiner B . (1991). Science, 254, 1359–1361.

    Article  CAS  Google Scholar 

  • Merrill BJ, Gat U, DasGupta R and Fuchs E . (2001). Genes Dev., 15, 1688–1705.

  • Miyoshi K, Shillingford JM, Smith GH, Grimm SL, Wagner KU, Oka T, Rosen JM, Robinson GW and Hennighausen, L . (2001). J. Cell Biol., 155, 531–542.

  • Miyoshi K, Meyer B, Gruss P, Cui Y, Renou JP, Morgan FV, Smith GH, Reichenstein M, Shani, M and Hennighausen, L and Robinson, GW . (2002b). Mol. Endocrinol., 16, 2892–2901.

  • Miyoshi K, Rosner A, Nozawa M, Byrd C, Morgan F, Landesman-Bollag E, Xu X, Seldin DC, Schmidt EV, Taketo MM, Robinson GW, Cardiff RD and Hennighausen L . (2000c). Oncogene, 21, 5548–5556.

  • Miyoshi K, Shillingford JM, Le Provost F, Gounari F, Bronson R, von Boehmer H, Taketo MM, Cardiff RD, Hennighausen L and Khazaie K . (2002a). Proc. Natl. Acad. Sci. USA, 99, 219–224.

  • Nevalainen MT, Ahonen TJ, Yamashita H, Chandrashekar V, Bartke A, Grimley PM, Robinson GW, Hennighausen L and Rui H . (2000). Lab. Invest., 80, 993–1006.

  • Niemann C, Owens DM, Hulsken J, Birchmeier W and Watt PM . (2002). Development, 129, 95–109.

  • Oettgen P, Kas K, Dube A, Gu X, Grall F, Thamrongsak U, Akbarali Y, Finger E, Boltax J, Endress G, Munger K, Kunsch C and Libermann TA . (1999). J. Biol. Client., 274, 29439–29452.

  • Polakis P . (2000). Genes Dev., 14, 1837–1851.

  • Reese JH, McNeal JE, Goldenberg SL, Redwine EA and Sellers RG . (1992). Prostate, 20, 73–85.

    Article  CAS  Google Scholar 

  • Robinson GW, McKnight RA, Smith GH, Hennighausen L . (1995). Development, 121, 2079–2090.

  • Rodriguez-Manzaneque JC, Lane TF, Ortega MA, Hynes RO, Lawler J and Iruela-Arispe ML . (2001). Proc. Natl. Acad. Sci. USA, 98, 12485–12490.

  • Roose J, Huls G, van Beest M, Moerer P, van der Horn K, Goldschmeding R, Logtenberg T and Clevers H . (1999). Science, 285, 1923–1926.

  • Ross SE, Hemati N, Longo KA, Bennett CN, Lucas PC, Erickson RL and MacDougald OA (2000). Science, 289, 950–953.

  • Shen X, Li J, Hu PP, Waddell D, Zhang J and Wang XF . (2001). J. Biol. Chem., 276, 15362–15368.

    Article  CAS  Google Scholar 

  • Shillingford JM, Miyoshi K, Flagella M, Shull GE and, Hennighausen L . (2002a). Mol. Endocrinol., 16, 1309–1321.

  • Shillingford JM, Miyoshi K, Robinson GW, Grimm SL, Rosen JM, Neubauer H, Pfeffer K and Hennighausen L . (2002b). Mol. Endocrinol., 16, 563–570.

  • Slunt HH, Thinakaran G, Von Koch C, Lo AC, Tanzi RE and Sisodia, SS .(1994). J. Biol. Chem., 269, 2637–2644.

  • Song HJ, Poy G, Darwiche N, Lichti U, Kuroki T, Steinert PM and Kartasova T (1999). Genomics, 55, 28–42.

    Article  CAS  Google Scholar 

  • Voeller HJ, Truica CI and Gelmann EP . (1998). Cancer Res., 58, 2520–2523.

  • Wagner KU, McAllister K, Ward T, Davis B, Wiseman R and Hennighausen L (2001). Transgenic Res., 10, 545–553.

  • Wagner KU, Wall RJ, St-Onge L, Gruss P, Wynshaw-Boris A, Garrett L, Li M, Furth PA and Hennighausen L . (1997). Nucleic Acids Res., 25, 4323–4330.

  • Watt FM and Hogan BL . (2000). Science, 287, 1427–1430.

    Article  CAS  Google Scholar 

  • Widelitz RB, Jiang TX, Lu J and Chuong CM . (2000). Dev. Biol., 219, 98–114.

Download references

Acknowledgements

We acknowledge N Harada, who originally generated the floxed mice. Part of this work was supported by grants from the Ministry of Education, Science, Sports and Culture, Japan; and Organization for Pharmaceutical Safety and Research, Japan. The rabbit polyclonal NKCC1 antibody that has been previously described (Moore-Hoon and Turner, 1998), was a kind gift from Dr Jim Turner, National Institute of Craniofacial and Dental Research, NIH (Bethesda, MD, USA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lothar Hennighausen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bierie, B., Nozawa, M., Renou, JP. et al. Activation of β-catenin in prostate epithelium induces hyperplasias and squamous transdifferentiation. Oncogene 22, 3875–3887 (2003). https://doi.org/10.1038/sj.onc.1206426

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1206426

Keywords

This article is cited by

Search

Quick links