Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

Oxidative damage to cellular and isolated DNA by homocysteine: implications for carcinogenesis

Abstract

Homocysteine is considered to be an important risk factor for cancer as well as cardiovascular diseases. To clarify whether homocysteine has potential carcinogenicity, we investigated formation of 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodG), which is known to be correlated with the incidence of cancer, induced by homocysteine in human cultured cell lines. Homocysteine increased the amount of 8-oxodG in human leukemia cell line HL-60, whereas the amount of 8-oxodG in its hydrogen peroxide (H2O2)-resistant clone HP100 was not increased. We investigated the mechanism for oxidative DNA damage by homocysteine using 32P-labeled DNA fragments obtained from human tumor suppressor genes and a proto-oncogene. There were two mechanisms by which homocysteine caused DNA damage in the presence of Cu(II). A low concentration of homocysteine (20 μ M) frequently induced piperidine-labile sites at thymine residues, whereas a high concentration of homocysteine (100 μ M) resulted in damage principally to guanine residues. Catalase inhibited DNA damage by 20 μ M homocysteine, indicating the participation of H2O2, but was ineffective in preventing DNA damage by 100 μ M homocysteine. Experiments using a singlet oxygen probe showed that 100 μ M homocysteine enhanced chemiluminescence intensity in deuterium oxide more than that in H2O. These results indicated that the metal-dependent DNA damage through H2O2 is likely to be a more relevant mechanism for homocysteine carcinogenicity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 4
Figure 5
Figure 3
Figure 6
Figure 7

Similar content being viewed by others

Abbreviations

8-oxodG:

8-oxo-7,8-dihydro-2′-deoxyguanosine

DTPA:

diethylenetriamine-N,N,N′,N,N″-pentaacetic acid

SOD:

superoxide dismutase

H2O2:

hydrogen peroxide

HPLC:

high-performance liquid chromatography

HPLC-ECD:

electrochemical detector coupled to HPLC

•OH:

hydroxyl free radical

O2:

superoxide anion

MVP:

trans-1-(2′-methoxyvinyl)pyrene

1O2:

singlet oxygen

D2O:

deuterium oxide

MTHFR:

methylenetetrahydrofolate reductase gene

DABCO:

1,4-diazabicyclo[2,2,2]-octane

References

  • Ames BN . (1999). Ann. NY Acad. Sci., 889, 87–106.

  • Bannai S . (1984). Biochim. Biophys. Acta, 779, 289–306.

  • Blom HJ . (1998). Am. J. Clin. Nutr., 67, 188–189.

  • Blount BC, Mack MM, Wehr CM, MacGregor JT, Hiatt RA, Wang G, Wickramasinghe SN, Everson RB and Ames BN . (1997). Proc. Natl. Acad. Sci. USA, 94, 3290–3295.

  • Bruner SD, Norman DP and Verdine GL . (2000). Nature, 403, 859–866.

  • Capon DJ, Chen EY, Levinson AD, Seeburg PH and Goeddel DV . (1983). Nature, 302, 33–37.

  • Celander DW and Cech TR . (1990). Biochemistry, 29, 1355–1361.

  • Chiu S, Xue L, Friedman LR and Oleinick NL . (1995). Biochemistry, 34, 2653–2661.

  • Chumakov P . (1990). EMBL Data Library Accession Number X54156.

  • Denissenko MF, Pao A, Tang M and Pfeifer GP . (1996). Science, 274, 430–432.

  • Dizdaroglu M, Aruoma OI and Halliwell B . (1990). Biochemistry, 29, 8447–8451.

  • Dizdaroglu M, Rao G, Halliwell B and Gajewski E . (1991). Arch. Biochem. Biophys., 285, 317–324.

  • El-Khairy L, Ueland PM, Nygard O, Refsum H and Vollset SE . (1999). Am. J. Clin. Nutr., 70, 1016–1024.

    Article  CAS  Google Scholar 

  • Epe B . (1991). Chemico-Biol. Int., 80, 239–260.

  • Fenech M, Aitken C and Rinaldi JR . (1998). Carcinogenesis, 19, 1163–1171.

  • Fenech M, Dreosti IE and Rinaldi JR . (1997). Carcinogenesis, 18, 1329–1336.

  • Glynn SA, Albanes D, Pietinen P, Brown CC, Rautalahti M, Tangrea JA, Gunter EW, Barrett MJ, Virtamo J and Taylor PR . (1996). Cancer Epidemiol. Biomark. Prevent., 5, 487–494.

  • Griffith OW . (1999). Free Rad. Biol. Med., 27, 922–935.

  • Guttormsen AB, Ueland PM, Nesthus I, Nygard O, Schneede J, Vollset SE and Refsum H . (1996). J. Clin. Invest., 98, 2174–2183.

  • Hall DB, Kelley SO and Barton JK . (1998). Biochemistry, 37, 15933–15940.

  • Hall RD, Chamulitrat W, Takahashi N, Chignell CF and Mason RP . (1989). J. Biol. Chem., 264, 7900–7906.

  • Heijmans BT, Gussekloo J, Kluft C, Droog S, Lagaay AM, Knook DL, Westendorp RG and Slagboom EP . (1999). Eur. J. Hum. Genet., 7, 197–204.

  • Huschtscha LI, Noble JR, Neumann AA, Moy EL, Barry P, Melki JR, Clark SJ and Reddel RR . (1998). Cancer Res., 58, 3508–3512.

  • Ito K, Inoue S, Yamamoto K and Kawanishi S . (1993). J. Biol. Chem., 268, 13221–13227.

  • Kark JD, Selhub J, Adler B, Gofin J, Abramson JH, Friedman G and Rosenberg IH . (1999). Ann. Int. Med., 131, 321–330.

  • Kasai H, Crain PF, Kuchino Y, Nishimura S, Ootsuyama A and Tanooka H . (1986). Carcinogenesis, 7, 1849–1851.

  • Kasugai I and Yamada M . (1992). Leukemia Res., 16, 173–179.

  • Kato I, Dnistrian AM, Schwartz M, Toniolo P, Koenig K, Shore RE, Akhmedkhanov A, Zeleniuch-Jacquotte A and Riboli E . (1999). Br. J. Cancer, 79, 1917–1922.

  • Kawanishi S, Inoue S, Sano S and Aiba H . (1986). J. Biol. Chem., 261, 6090–6095.

  • Kawanishi S and Yamamoto K . (1991). Biochemistry, 30, 3069–3075.

  • Langman LJ and Cole DE . (1999). Crit. Rev. Clin. Lab. Sci., 36, 365–406.

  • Linder MC . (2001). Copper and genomic stability in mammals. Mutat. Res., 475, 141–152.

    Article  CAS  Google Scholar 

  • Lindig BA, Rodgers MA and Schaap AP . (1980). J. Am. Chem. Soc., 102, 5590–5593.

  • Loft S and Poulsen HE . (1996). J. Mol. Med., 74, 297–312.

  • Martinez ME, Maltzman T, Marshall JR, Einspahr J, Reid ME, Sampliner R, Ahnen DJ, Hamilton SR and Alberts DS . (1999). Cancer Res., 59, 5181–5185.

  • Maxam AM and Gilbert W . (1980). Methods Enzymol., 65, 499–560.

  • McCully KS . (1993). Ann. Clin. Lab. Sci., 23, 477–493.

  • Miller H, Prasad R, Wilson SH, Johnson F and Grollman AP . (2000). Biochemistry, 39, 1029–1033.

  • Murata M and Kawanishi S . (2000). J. Biol. Chem., 275, 2003–2008.

  • Nygard O, Vollset SE, Refsum H, Stensvold I, Tverdal A, Nordrehaug JE, Ueland M and Kvale G . (1995). JAMA, 274, 1526–1533.

  • Oikawa S and Kawanishi S . (1998). Biochim. Biophys. Acta, 1399, 19–30.

  • Piette J . (1991). J. Photochem. Photobiol. B—Biol., 11, 241–260.

  • Pryor WA and Tang RH . (1978). Biochem. Biophys. Res. Commun., 81, 498–503.

  • QUASAR Collaborative Group. (2000). Lancet, 355, 1588–1596.

  • Ravanat JL, Di Mascio P, Martinez GR, Medeiros MH and Cadet J . (2000). J. Biol. Chem., 275, 40601–40604.

  • Roussel MF . (1999). Oncogene, 18, 5311–5317.

  • Schneede J, Refsum H and Ueland PM . (2000). Semin. Thromb. Hemost., 26, 263–279.

  • Serrano M, Hannon GJ and Beach D . (1993). Nature, 366, 704–707.

  • Sevilla MD, Becker D, Swarts S and Herrington J . (1987). Biochem. Biophys. Res. Commun., 144, 1037–1042.

  • Shibutani S, Takeshita M and Grollman AP . (1991). Nature, 349, 431–434.

  • Stevenson C and Davies RJH . (1999). Chem. Res. Toxicol., 12, 38–45.

  • Stolzenberg-Solomon RZ, Albanes D, Nieto FJ, Hartman TJ, Tangrea JA, Rautalahti M, Sehlub J, Virtamo J and Taylor PR . (1999). J. Natl. Cancer Inst., 91, 535–541.

  • Tada-Oikawa S, Oikawa S and Kawanishi S . (2000). Methods Enzymol., 319, 331–342.

  • Tanaka T, Iwasa Y, Kondo S, Hiai H and Toyokuni S . (1999). Oncogene, 18, 3793–3797.

  • Theophanides T and Anastassopoulou J . (2002). Crit. Rev. Oncol. Hematol., 42, 57–64.

  • Thomson SW, Heimburger DC, Cornwell PE, Turner ME, Sauberlich HE, Fox LM and Butterworth CE . (2000). Nutrition, 16, 411–446.

  • Tuite EM and Kelly JM . (1993). J. Photochem. Photobiol. B: Biol., 21, 103–124.

  • Walker DR, Bond JP, Tarone RE, Harris CC, Makalowski W, Boguski MS and Greenblatt MS . (1999). Oncogene, 18, 211–218.

Download references

Acknowledgements

This work was supported by a Grant-in-Aid from the Ministry of Education, Science, Sports, and Culture of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shosuke Kawanishi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oikawa, S., Murakami, K. & Kawanishi, S. Oxidative damage to cellular and isolated DNA by homocysteine: implications for carcinogenesis. Oncogene 22, 3530–3538 (2003). https://doi.org/10.1038/sj.onc.1206440

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1206440

Keywords

This article is cited by

Search

Quick links