Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

Loss of p53 function accelerates acquisition of telomerase activity in indefinite lifespan human mammary epithelial cell lines

Abstract

We describe novel effects of p53 loss on immortal transformation, based upon comparison of immortally transformed human mammary epithelial cell (HMEC) lines lacking functional p53 with closely related p53(+) lines. Our previous studies of p53(+) immortal HMEC lines indicated that overcoming the stringent replicative senescence step associated with critically short telomeres (agonescence), produced indefinite lifespan lines that maintained growth without immediately expressing telomerase activity. These telomerase(−) ‘conditionally immortal’ HMEC underwent an additional step, termed conversion, to become fully immortal telomerase(+) lines with uniform good growth. The very gradual conversion process was associated with slow heterogeneous growth and high expression of the cyclin-dependent kinase inhibitor p57Kip2. We now show that p53 suppresses telomerase activity and is necessary for the p57 expression in early passage p53(+) conditionally immortal HMEC lines, and that p53(−/−) lines exhibit telomerase reactivation and attain full immortality much more rapidly. A p53-inhibiting genetic suppressor element introduced into early passages of a conditionally immortal telomerase(−) p53(+) HMEC line led to rapid induction of hTERT mRNA, expression of telomerase activity, loss of p57 expression, and quick attainment of uniform good growth. These studies indicate that derangements in p53 function may impact malignant progression through direct effects on the conversion process, a potentially rate-limiting step in HMEC acquisition of uniform unlimited growth potential. These studies also provide evidence that the function of p53 in suppression of telomerase activity is separable from its cell cycle checkpoint function.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Abbreviations

CFE:

colony forming efficiency

CKI:

cyclin-dependent kinase inhibitor

EL:

extended life

GSE:

genetic suppressor element

HMEC:

human mammary epithelial cells

LI:

labeling index

PDs:

population doublings

RB:

retinoblastoma

SA-βgal:

senescence associated β-galactosidase

TRF:

terminal restriction fragment

References

  • Albrechtsen N, Dornreiter I, Grosse F, Kim E, Weismuller L and Deppert W . (1999). Oncogene, 18, 7706–7717.

  • Allred DC and Mohsin SK . (2000). J. Mam. Gland Biol. Neoplasia, 5, 351–364.

  • Allsopp RC, Vaziri H, Patterson C, Goldstein S, Younglai EV, Futcher AB, Greider CW and Harley CB . (1992). Proc. Natl. Acad. Sci. USA, 89, 10114–10118.

  • Bacchetti S . (1996). Cancer Surveys, 28, 197–216.

  • Band V, DeCaprio J, Delmolino L, Kulesa V and Sager R . (1991). J. Virol., 65, 6671–6676.

  • Bartkova J, Lukas J, Muller H, Lutzhoft D, Strauss M and Bartek J . (1994). Int. J. Cancer, 57, 353–361.

  • Bednarek A, Sahin A, Brenner AJ, Johnston DA and Aldaz CM . (1997). Clin. Cancer Res., 3, 11–16.

  • Bodnar AG, Kim NW, Effros RB and Chiu C-P . (1996). Exp. Cell Res., 228, 58–64.

  • Brenner AJ, Paladugu A, Wang H, Olopade OI, Dreyling MG and Aldaz CM . (1996). Clin. Cancer Res., 2, 1993–1998.

  • Brenner AJ, Stampfer MR and Aldaz CM . (1998). Oncogene, 17, 199–205.

  • Buckley M, Sweeney K, Hamilton J, Sini R, Manning D, Nicholson R, deFazio A, Watts C, Musgrove E and Sutherland R . (1993). Oncogene, 8, 2127–2133.

  • Bunz F, Fauth C, Speicher MR, Dutriaux A, Sedivy JM, Kinzler KW, Vogelstein B and Langauer C . (2002). Cancer Res., 62, 1129–1133.

  • Cao Y-A, Gao Q, Wazer DE and Band V . (1997). Cancer Res., 57, 5584–5589.

  • Catzavelos C, Bhattacharya N, Wilson JA, Roncari L, Shaw P, Yeger H, Morava-Protzner I, Kapusta L, Franssen E, Pritchard KI, Ung Y and Slingerland JM . (1997). Nat. Genet., 3, 227–230.

  • Chan SW-L and Blackburn EH . (2002). Oncogene, 21, 553–563.

  • Chang S, Khoo C and DePinho RA . (2001). Cancer Biol., 11, 227–238.

  • Clark R, Stampfer M, Milley B, O'Rourke E, Walen K, Kriegler M and Kopplin J . (1988). Cancer Res., 48, 4689–4694.

  • de Lange T . (2002). Oncogene, 21, 532–540.

  • Done SJ, Arneson NCR, zçelik H, Redston M and Andrulis IL . (1998). Cancer Res., 58, 785–789.

  • Finer MH, Dull TJ, Qin L, Farson D and Roberts MR . (1994). Blood, 83, 43–50.

  • Gao Q, Hauser SH, Liu X-L, Wazer DE, Madoc-Jones H and Band V . (1996). Cancer Res., 56, 3129–3133.

  • Garbe J, Wong M, Wigington D, Yaswen P and Stampfer MR . (1999). Oncogene, 18, 2169–2180.

  • Gollahon LS and Shay JW . (1996). Oncogene, 12, 715–725.

  • Hammond SL, Ham RG and Stampfer MR . (1984). Proc. Natl. Acad. Sci. USA, 81, 5435–5439.

  • Herman JG, Merlo A, Mao L, Lapidus RG, Issa J-PJ, Davidson NE, Sidransky D and Baylin SB . (1995). Cancer Res., 55, 4525–4530.

  • Iacopetta B, Grieu F, Powell B, Soong R, McCaul K and Seshadri R . (1998). Clin. Cancer Res., 4, 1597–1602.

  • Kastan MB, Zhan Q, El-Deiry WS, Carrier F, Jacks T, Walsh WV, Plunkett BS, Vogelstein B and Fornace Jr AJ . (1992). Cell, 71, 587–597.

  • Keyomarsi K and Pardee AB . (1993). Proc. Natl. Acad. Sci. USA, 90, 1112–1116.

  • Kim NW, Piatyszek MA, Prowse KR, Harley CB, West MD, Ho PLC, Coviello GM, Wright WE, Weinrich SL and Shay JW . (1994). Science, 266, 2011–2015.

  • Lehman T, Modali R, Boukamp P, Stanek J, Bennett W, Welsh J, Metcalf R, Stampfer M, Fusenig N, Rogan E, Reddel R and Harris C . (1993). Carcinogenesis, 14, 833–839.

  • Li H, Cao Y, Berndt MC, Funder JW and Liu J-P . (1999). Oncogene, 18, 6785–6794.

  • Matsuoka S, Edwards MC, Bai C, Parker S, Zhang P, Baldini A, Harper JW and Elledge SJ . (1995). Genes Dev., 9, 650–662.

  • Nijjar T, Wigington D, Garbe JC, Waha A, Stampfer MR and Yaswen P . (1999). Cancer Res., 59, 5112–5118.

  • Nonet G, Stampfer MR, Chin K, Gray JW, Collins CC and Yaswen P . (2001). Cancer Res., 61, 1250–1254.

  • Ossovskaya VS, Mazo IA, Chernov MV, Chernova OB, Strezoska Z, Kondratov R, Stark GR, Chumakov PM and Gudkov AV . (1996). Proc. Natl. Acad. Sci. USA, 93, 10309–10314.

  • Poremba C, Shroyer KR, Frost M, Diallo R, Fogt F, Schafer K-L, Burger H, Shroyer AL, Dockhorn-Dworniczak B and Boecker W . (1999). J. Clin. Oncol., 17, 2020–2026.

  • Porter PL, Malone KE, Heagerty PJ, Alexander GM, Gatti LA, Firpo EJ, Daling JR and Roberts JM . (1997). Nat. Med., 3, 222–225.

  • Romanov S, Kozakiewicz K, Holst C, Stampfer MR, Haupt LM and Tlsty T . (2001). Nature, 409, 633–637.

  • Roos G, Nilsson P, Cajander S, Nielsen N-H, Arnerlöv C and Landberg G . (1998). Int. J. Cancer, 79, 343–348.

  • Sandhu C, Garbe J, Bhattacharya N, Daksis JI, Pan C-H, Yaswen P, Koh J, Slingerland JM and Stampfer MR . (1997). Mol. Cell. Biol., 17, 2458–2467.

  • Shay JW, Tomlinson G, Piatyszek MA and Gollahon LS . (1995). Mol. Cell. Biol., 15, 425–432.

  • Shay JW, Wright WE, Brasiskyte D and Van Der Haegen BA . (1993). Oncogene, 8, 1407–1413.

  • Shpitz B, Zimlichman S, Zemer R, Bomstein Y, Zehavi T, Liverant S, Bernehim J, Kaufman Z, Klein E, Shapira Y and Klein A . (1999). Breast Cancer Res. Treat., 58, 65–69.

  • Sjogren S, Inganas M, Norberg T, Lindgren A, Nordgren H, Holmberg L and Bergh J . (1996). J. Natl. Cancer Inst., 88, 173–182.

  • Stampfer MR . (1985). J. Tissue Culture Methods, 9, 107–116.

  • Stampfer MR and Bartley JC . (1985). Proc. Natl. Acad. Sci. USA, 82, 2394–2398.

  • Stampfer MR and Bartley JC . (1988). Breast Cancer: Cellular and Molecular Biology Dickson R and Lippman M. (eds) Kluwer Academic Publishers: Norwall, MA, pp. 1–24.

    Book  Google Scholar 

  • Stampfer MR, Bodnar A, Garbe J, Wong M, Pan A, Villeponteau B and Yaswen P . (1997). Mol. Biol. Cell, 8, 2391–2405.

  • Stampfer M, Garbe J, Levine G, Lichsteiner S, Vasserot A and Yaswen P . (2001). Proc. Natl. Acad. Sci. USA, 98, 4498–4503.

  • Stampfer MR, Pan CH, Hosoda J, Bartholomew J, Mendelsohn J and Yaswen P . (1993). Exp. Cell Res., 208, 175–188.

  • Stampfer MR and Yaswen P . (2000). J. Mam. Gland Biol.Neoplasia, 5, 365–378.

  • Stampfer MR and Yaswen P . (2001). Telomerase, Aging and Disease, Vol. 8: Advances in Cell Aging and Gerontology Mattson M and Pandita T (eds) Elsevier: Amsterdam, pp. 103–130.

    Book  Google Scholar 

  • Sugino T, Yoshida K, Bolodeoku J, Tahara H, Buley I, Manek S, Wells C, Goodison S, Ide T, Suzuki T, Tahara E and Tarin D . (1996). Int. J. Cancer, 69, 301–306.

  • Tlsty TD, Romanov SR, Kozakiewicz BK, Holst CR, Haupt LM and Crawford YG . (2001). J. Mam. Gland Biol. Neoplasia, 6, 235–243.

  • Walen K and Stampfer MR . (1989). Cancer Genet. Cytogenet., 37, 249–261.

  • Weinstat-Saslow D, Merino M, Manrow R, Lawrence J, Bluth R, Wittenbel K, Simpson J, Page D and Steeg S . (1995). Nat. Med., 1, 1257–1260.

  • Xu D, Wang Q, Gruber A, Bjorkholm M, Chen Z, Zaid A, Selivanova G, Peterson C, Wiman KG and Pisa P . (2000). Oncogene, 19, 5123–5133.

Download references

Acknowledgements

We thank Michelle Wong and Gerri Levine for excellent technical help, and the Cell Genesys Corp. for providing the kat retroviral packaging system. Supported by NIH Grant CA-24844 (MRS, PY), the Office of Energy Research, Office of Health and Biological Research, US Department of Energy under Contract No. DE-AC03-76SF00098 (MRS, PY), the Susan G Komen Breast Cancer Foundation Grant 9742 (PY), California Breast Cancer Research Program Grant 4JB-0119 (MRS, PY), US Army DMAD-94-J-4028 (KS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martha R Stampfer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stampfer, M., Garbe, J., Nijjar, T. et al. Loss of p53 function accelerates acquisition of telomerase activity in indefinite lifespan human mammary epithelial cell lines. Oncogene 22, 5238–5251 (2003). https://doi.org/10.1038/sj.onc.1206667

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1206667

Keywords

This article is cited by

Search

Quick links