Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

Distinct modes of deregulation of the proto-oncogenic Cdc25A phosphatase in human breast cancer cell lines

Abstract

The rapid cell cycle arrest in response to DNA damage is mediated by degradation of the Cdc25A phosphatase, a proto-oncogene whose mRNA is frequently overexpressed in human tumours. Here, we study the occurrence and mechanisms of Cdc25A deregulation in human breast cancer cell lines. We demonstrate aberrantly elevated Cdc25A protein abundance and phosphatase activity in eight out of 15 cell lines, in some cases resulting in abrogation of the Cdc25A-mediated checkpoint response to ionizing radiation (IR), and this defect correlated with hypersensitivity to IR. Furthermore, we present evidence that deregulation of Cdc25A occurs predominantly on the post-transcriptional level, as overabundant Cdc25A protein was usually not accompanied by adequate mRNA overexpression. Instead, we demonstrate that aberrantly enhanced protein stability is an important mechanism underlying Cdc25A overabundance in a subset of breast cancer cell lines. Given the frequency of this mechanism, we propose that the DNA integrity checkpoint controlling Cdc25A protein stability might be a common target for deregulation in breast cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  • Abraham RT . (2001). Genes Dev., 15, 2177–2196.

  • Bartek J, Falck J and Lukas J . (2001). Nat. Rev. Mol. Cell. Biol., 2, 877–886.

  • Bartek J and Lukas J . (2001a). Curr. Opin. Cell. Biol., 13, 738–747.

  • Bartek J and Lukas J . (2001b). FEBS Lett., 490, 117–122.

  • Bartkova J, Lukas J, Strauss M and Bartek J . (1994). J. Pathol., 172, 237–245.

  • Cangi MG, Cukor B, Soung P, Signoretti S, Moreira Jr G, Ranashinge M, Cady B, Pagano M and Loda M . (2000). J. Clin. Invest., 106, 753–761.

  • D'Amours D and Jackson SP . (2002). Nat. Rev. Mol. Cell. Biol., 3, 317–327.

  • Donzelli M, Squatrito M, Ganoth D, Hershko A, Pagano M and Draetta GF . (2002). EMBO J., 21, 4875–4884.

  • Falck J, Mailand N, Syljuåsen RG, Bartek J and Lukas J . (2001). Nature, 410, 842–847.

  • Galaktionov K, Chen X and Beach D . (1996). Nature, 382, 511–517.

  • Galaktionov K, Lee AK, Eckstein J, Draetta G, Meckler J, Loda M and Beach D . (1995). Science, 269, 1575–1577.

  • Gasparotto D, Maestro R, Piccinin S, Vukosavljevic T, Barzan L, Sulfaro S and Boiocchi M . (1997). Cancer Res., 57, 2366–2368.

  • Hoeijmakers JH . (2001). Nature, 411, 366–374.

  • Jiang XR, Jimenez G, Chang E, Frolkis M, Kusler B, Sage M, Beeche M, Bodnar AG, Wahl GM, Tlsty TD and Chiu CP . (1999). Nat. Genet., 21, 111–114.

  • Jinno S, Suto K, Nagata A, Igarashi M, Kanaoka Y, Nojima H and Okayama H . (1994). EMBO J., 13, 1549–1556.

  • Lengauer C, Kinzler KW and Vogelstein B . (1998). Nature, 396, 643–649.

  • Lukas J, Bartkova J, Rohde M, Strauss M and Bartek J . (1995). Mol. Cell. Biol., 15, 2600–2611.

  • Mailand N, Falck J, Lukas C, Syljuåsen RG, Welcker M, Bartek J and Lukas J . (2000). Science, 288, 1425–1429.

  • Mailand N, Podtelejnikov AV, Groth A, Mann M, Bartek J and Lukas J . (2002). EMBO J., 21, 5911–5920.

  • May P and May E . (1999). Oncogene, 18, 7621–7636.

  • Meijers-Heijboer H, van den Ouweland A, Klijn J, Wasielewski M, de Snoo A, Oldenburg R, Hollestelle A, Houben M, Crepin E, van Veghel-Plandsoen M, Elstrodt F, van Duijn C, Bartels C, Meijers C, Schutte M, McGuffog L, Thompson D, Easton D, Sodha N, Seal S, Barfoot R, Mangion J, Chang-Claude J, Eccles D, Eeles R, Evans DG, Houlston R, Murday V, Narod S, Peretz T, Peto J, Phelan C, Zhang HX, Szabo C, Devilee P, Goldgar D, Futreal PA, Nathanson KL, Weber B, Rahman N and Stratton MR . (2002). Nat. Genet., 31, 55–59.

  • Mondesert O, Ducommun B and Bugler B . (2002). Biochem. Biophys. Res. Commun., 295, 673–677.

  • Moynahan ME . (2002). Oncogene, 21, 8994–9007.

  • Nilsson I and Hoffmann I . (2000). Prog. Cell Cycle Res., 4, 107–114.

  • Nishioka K, Doki Y, Shiozaki H, Yamamoto H, Tamura S, Yasuda T, Fujiwara Y, Yano M, Miyata H, Kishi K, Nakagawa H, Shamma A and Monden M . (2001). Br. J. Cancer, 85, 412–421.

  • Rotman G and Shiloh Y . (1999). Oncogene, 18, 6135–6144.

  • Rouse J and Jackson SP . (2002). Science, 297, 547–551.

  • Santoni-Rugiu E, Falck J, Mailand N, Bartek J and Lukas J . (2000). Mol. Cell. Biol., 20, 3497–3509.

  • Shiloh Y . (2003). Nat. Rev. Cancer, 3, 155–168.

  • Sørensen CS, Lukas C, Kramer ER, Peters JM, Bartek J and Lukas J . (2000). Mol. Cell. Biol., 20, 7613–7623.

  • Sørensen CS, Syljuåsen RG, Falck J, Schroeder T, Rönnstrand L, Khanna KK, Zhou BB, Bartek J and Lukas J . (2003). Cancer Cell, 3, 247–248.

  • Soussi T and Beroud C . (2001). Nat. Rev. Cancer, 1, 233–240.

  • Taniguchi T, Garcia-Higuera I, Xu B, Andreassen PR, Gregory RC, Kim ST, Lane WS, Kastan MB and D’Andrea AD . (2002). Cell, 109, 459–472.

  • Tassan JP, Schultz SJ, Bartek J and Nigg EA . (1994). J. Cell Biol., 127, 467–478.

  • Tauchi H, Matsuura S, Kobayashi J, Sakamoto S and Komatsu K . (2002). Oncogene, 21, 8967–8980.

  • Vahteristo P, Bartkova J, Eerola H, Syrjäkoski K, Ojala S, Kilpivaara O, Tamminen A, Kononen J, Aittomäki K, Heikkilä P, Holli K, Blomqvist C, Bartek J, Kallioniemi OP and Nevanlinna H . (2002). Am. J. Hum. Genet., 71, 432–438.

  • Varley JM, Evans DG and Birch JM . (1997). Br. J. Cancer, 76, 1–14.

  • Vigo E, Muller H, Prosperini E, Hateboer G, Cartwright P, Moroni MC and Helin K . (1999). Mol. Cell. Biol., 19, 6379–6395.

  • Wu W, Fan YH, Kemp BL, Walsh G and Mao L . (1998). Cancer Res., 58, 4082–4085.

  • Zhou BB and Elledge SJ . (2000). Nature, 408, 433–439.

Download references

Acknowledgements

We thank P Guldberg for help with the real-time PCR, AE Lykkesfeldt and PE Lønning for some of the cell lines, and current and former members of the Department of Cell Cycle and Cancer for generously sharing expertise and ideas. This work was supported by the Danish Cancer Society, the European Commission, the Dr Mildred Scheel Stiftung für Krebsforschung, Bonn, Germany, the Danish Medical Research Council, and the Alfred Benzon's Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiri Bartek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Löffler, H., Syljuåsen, R., Bartkova, J. et al. Distinct modes of deregulation of the proto-oncogenic Cdc25A phosphatase in human breast cancer cell lines. Oncogene 22, 8063–8071 (2003). https://doi.org/10.1038/sj.onc.1206976

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1206976

Keywords

This article is cited by

Search

Quick links