Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

Overexpression of mammalian Rad51 does not stimulate tumorigenesis while a dominant-negative Rad51 affects centrosome fragmentation, ploidy and stimulates tumorigenesis, in p53-defective CHO cells

Abstract

Rad51 protein plays a pivotal role in homologous recombination (HR), which is involved in double-strand break repair and in genome maintenance. Despite interactions with tumor suppressor proteins, the role of mammalian Rad51 and more generally of HR in tumor prevention is not clearly established. Indeed, both high and low frequencies of HR as well as high and low levels of RAD51 expression have been reported in tumors and in precancerous conditions. To address the question of the impact of HR on tumorigenesis, we used Chinese hamster ovary (CHO) p53-defective cell lines overexpressing the mouse MmRAD51, which stimulates HR (we name these lines: Hyper-rec lines). In parallel, we used CHO cell lines expressing a RAD51 dominant-negative form that specifically inhibits gene conversion without affecting cell viability (Hypo-rec lines). These different lines were injected into nude mice to measure their tumorigenicity. Hypo-rec lines generated a higher frequency of tumors, which also exhibited faster growth, compared to control and Hyper-rec lines. Consistent with tumorigenicity, Hypo-rec cells exhibit spontaneous centrosome duplication defects and aneuploidy. These results are the first direct evidence of involvement of RAD51 in tumor repression.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Ausubel F, Brent R, Kingston R, Moore D, Seidman J, Smith J and Struhl K . (1999). Current Protocols in Molecular Biology. John Wiley and Sons, Inc.: Boston.

    Google Scholar 

  • Bertrand P, Rouillard D, Boulet A, Levalois C, Soussi T and Lopez BS . (1997). Oncogene, 14, 1117–1122.

  • Buchhop S, Gibson MK, Wang XW, Wagner P, Sturzbecher HW and Harris CC . (1997). Nucleic Acids Res., 25, 3868–3874.

  • Chen F, Nastasi A, Shen Z, Brenneman M, Crissman H and Chen DJ . (1997). Mutat. Res., 384, 205–211.

  • Flygare J, Benson F and Hellgren D . (1996). Biochim. Biophys. Acta., 1312, 231–236.

  • Griffin CS, Simpson PJ, Wilson CR and Thacker J . (2000). Nat. Cell Biol., 2, 757–761.

  • Hu T, Miller CM, Ridder GM and Aardema MJ . (1999). Mutat. Res., 426, 51–62.

  • Lambert S and Lopez BS . (2000). EMBO J., 19, 3090–3099.

  • Lambert S and Lopez BS . (2001). Oncogene, 20, 6627–6631.

  • Lambert S and Lopez BS . (2002). Oncogene, 21, 4065–4069.

  • Lengauer C, Kinzler KW and Vogelstein B . (1998). Nature, 396, 643–649.

  • Levy-Lahad E, Lahad A, Eisenberg S, Dagan E, Paperna T, Kasinetz L, Catane R, Kaufman B, Beller U, Renbaum P and Gershoni-Baruch R . (2001). Proc. Natl. Acad. Sci. USA, 98, 3232–3236.

  • Liang F, Han M, Romanienko PJ and Jasin M . (1998). Proc. Natl. Acad. Sci. USA, 95, 5172–5177.

  • Lim DS and Hasty P . (1996). Mol. Cell. Biol., 16, 7133–7143.

  • Maacke H, Jost K, Opitz S, Miska S, Yuan Y, Hasselbach L, Luttges J, Kalthoff H and Sturzbecher HW . (2000). Oncogene, 19, 2791–2795.

  • Mekeel KL, Tang W, Kachnic LA, Luo CM, DeFrank JS and Powell SN . (1997). Oncogene, 14, 1847–1857.

  • Meyn MS . (1993). Science, 260, 1327–1330.

  • Mizuta R, LaSalle JM, Cheng HL, Shinohara A, Ogawa H, Copeland N, Jenkins NA, Lalande M and Alt FW . (1997). Proc. Natl. Acad. Sci. USA, 94, 6927–6932.

  • Morita T, Yoshimura Y, Yamamoto A, Murata K, Mori M, Yamamoto H and Matsushiro A . (1993). Proc. Natl. Acad. Sci. USA, 90, 6577–6580.

  • Moynahan ME, Chiu JW, Koller BH and Jasin M . (1999). Mol. Cell, 4, 511–518.

  • Moynahan ME, Pierce AJ and Jasin M . (2001). Mol. Cell, 7, 263–272.

  • Pierce AJ, Stark JM, Araujo FD, Moynahan ME, Berwick M and Jasin M . (2001). Trends Cell Biol., 11, S552–S599.

  • Pihan GA, Purohit A, Wallace J, Knecht H, Woda B, Quesenberry P and Doxsey SJ . (1998). Cancer Res., 58, 3974–3985.

  • Raderschall E, Stout K, Freier S, Suckow V, Schweiger S and Haaf T . (2002). Cancer Res., 62, 219–225.

  • Saintigny Y, Delacote F, Vares G, Petitot F, Lambert S, Averbeck D and Lopez BS . (2001a). EMBO J., 20, 3861–3870.

  • Saintigny Y, Dumay A, Lambert S and Lopez BS . (2001b). EMBO J, 20, 2596–2607.

  • Saintigny Y, Rouillard D, Chaput B, Soussi T and Lopez BS . (1999). Oncogene, 18, 3553–3563.

  • Sambrook J, Fritsch EF and Maniatis T . (1989). Molecular Cloning: A Laboratory Manuel. 2nd edn. Cold Spring Harbor Laboratory Press: Cold Spring Harbor.

    Google Scholar 

  • Scully R, Chen J, Plug A, Xiao Y, Weaver D, Feunteun J, Ashley T and Livingston DM . (1997). Cell, 88, 265–275.

  • Shinohara A, Ogawa H, Matsuda Y, Ushio N, Ikeo K and Ogawa T . (1993). Nat. Genet., 4, 239–243.

  • Slupianek A, Schmutte C, Tombline G, Nieborowska-Skorska M, Hoser G, Nowicki MO, Pierce AJ, Fishel R and Skorski T . (2001). Mol. Cell, 8, 795–806.

  • Sokal RR and Rohlf JF . (1995). Biometry, the Principle and Practice of Statistics in Biological Research 3rd edn. W.H. Freeman and Company: New York.

    Google Scholar 

  • Sturzbecher HW, Donzelmann B, Henning W, Knippschild U and Buchhop S . (1996). EMBO J., 15, 1992–2002.

  • Wiese C, Pierce AJ, Gauny SS, Jasin M and Kronenberg A . (2002). Cancer Res., 62, 1279–1283.

  • Wiesmuller L, Cammenga J and Deppert WW . (1996). J. Virol., 70, 737–744.

  • Yamamoto A, Taki T, Yagi H, Habu T, Yoshida K, Yoshimura Y, Yamamoto K, Matsushiro A, Nishimune Y and Morita T . (1996). Mol. Gen. Genet., 251, 1–12.

  • Yoshikawa K, Ogawa T, Baer R, Hemmi H, Honda K, Yamauchi A, Inamoto T, Ko K, Yazumi S, Motoda H, Kodama H, Noguchi S, Gazdar AF, Yamaoka Y and Takahashi R . (2000). Int. J. Cancer, 88, 28–36.

Download references

Acknowledgements

We thank Dr D Marsh for correction of the manuscript. Thanks are due to P Flament and I Duvaleix for animal care and management and to the laboratory of L Sabatier and especially to M Ricoul and L Martins for chromosome expertise. SL was supported by a fellowship from the ‘La Ligue Nationale Française contre le Cancer’. This work was supported by the CEA, CNRS, Electricité de France, and the Association pour la Recherche contre le Cancer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernard S Lopez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bertrand, P., Lambert, S., Joubert, C. et al. Overexpression of mammalian Rad51 does not stimulate tumorigenesis while a dominant-negative Rad51 affects centrosome fragmentation, ploidy and stimulates tumorigenesis, in p53-defective CHO cells. Oncogene 22, 7587–7592 (2003). https://doi.org/10.1038/sj.onc.1206998

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1206998

Keywords

This article is cited by

Search

Quick links