Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

Substitution of C-terminus of VEGFR-2 with VEGFR-1 promotes VEGFR-1 activation and endothelial cell proliferation

Abstract

VEGFR-1 is devoid of ligand-dependent tyrosine autophosphorylation and its activation is not associated with proliferation of endothelial cells. The molecular mechanism responsible for this characteristic of VEGFR-1 is not known. In this study, we show that VEGFR-1 is devoid of ligand-dependent downregulation and failed to stimulate intracellular calcium release, cell migration and angiogenesis in vitro. To understand the molecular mechanisms responsible for the poor tyrosine autophosphorylation of VEGFR-1, we have either deleted the carboxyl terminus of VEGFR-1 or exchanged it with the carboxyl terminus of VEGFR-2. The deletion of carboxyl terminus of VEGFR-1 did not reverse its defective ligand-dependent autophosphorylation. The carboxyl terminus-swapped VEGFR-1, however, displayed ligand-dependent autophosphorylation, downregulation and also conveyed strong mitogenic responses. Thus, the carboxyl tail of VEGFR-1 restrains the ligand-dependent kinase activation and downregulation of VEGFR-1 and its ability to convey the angiogenic responses in endothelial cells.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Alimandi M, Romano A, Curia MC, Muraro R, Fedi P, Aaronson SA, Di Fiore PP and Kraus MH . (1995). Oncogene, 10, 1813–1821.

  • Athanassiades A and Lala PK . (1998). Placenta, 7, 465–473.

  • Autiero M, Waltenberger J, Communi D, Kranz A, Moons L, Lambrechts D, Kroll J, Plaisance S, De Mol M, Bono F, Kliche S, Fellbrich G, Ballmer-Hofer K, Maglione D, Mayr-Beyrle U, Dewerchin M, Dombrowski S, Stanimirovic D, Van Hummelen P, Dehio C, Hicklin DJ, Persico G, Herbert JM, Communi D, Shibuya M, Collen D, Conway EM and Carmeliet P . (2003). Nat. Med., 9, 936–943.

  • Breier G . (2000). Adv. Exp. Med. Biol., 476, 57–66 (Review).

  • Chou YH and Hayman MJ . (1991). Proc. Natl. Acad. Sci. USA, 88, 4897–4901.

  • Clauss M, Weich H, Brier G, Knies U, Rockl W, Waltenberger J and Risau W . (1996). J. Biol. Chem., 27, 17629–17634.

  • de Vries C, Escobedo JA, Ueno H, Houck K, Ferrara N and Williams LT . (1992). Science, 255, 989–991.

  • Felder S, Miller K, Moehren G, Ullrich A, Schlessinger J and Hopkins CR . (1990). Cell, 61, 623–634.

  • Fong GH and Rossant J . (1995). Nature, 376, 66–70.

  • Fong GH, Zhang L, Bryce DM and Peng J . (1999). Development, 126, 3015–3025.

  • Gille H, Kowalski J, Li B, LeCouter J, Moffat B, Zioncheck TF, Pelletier N and Ferrara N . (2001). J. Biol. Chem., 276, 3222–3230.

  • Gille H, Kowalski J, Yu L, Chen H, Pisabarro MT, Davis-Smyth T and Ferrara N . (2000). EMBO J., 19, 4064–4073.

  • Gruenberg J . (2001). Nat. Rev. Mol. Cell Biol., 2, 721–730 (Review).

  • Guy PM, Platko JV, Cantley LC, Cerione RA and Carraway III KL . (1994). Proc. Natl. Acad. Sci. USA, 91, 8132–8136.

  • Hanahan D and Folkman J . (1996). Cell, 86, 353–364.

  • Hanks S and Quinn AM . (1991). Methods Enzymol., 200, 38–62.

  • Hiratsuka S, Minowa O, Kuno J, Noda T and Shibuya M . (1998). Proc. Natl. Acad. Sci. USA, 95, 9349–9354.

  • Honegger AM, Dull TJ, Felder S, Van Obberghen E, Bellot F, Szapary D, Schmidt A, Ullrich A and Schlessinger J . (1987). Cell, 51, 199–209.

  • Kanno S, Oda N, Abe M, Terai Y, Ito M, Shitara K, Tabayashi K, Shibuya M and Sato Y . (2000). Oncogene, 19, 2138–2146.

  • Kearney JB, Ambler CA, Monaco KA, Johnson N, Rapoport RG and Bautch VL . (2002). Blood, 99, 2397–2407.

  • Keyt BA, Nguyen HV, Berleau LT, Duarte CM, Park J, Chen H and Ferrara N . (1996). J. Biol. Chem., 271, 5638–5646.

  • Klepeis VE, Cornell-Bell A and Trinkaus-Randall V . (2001). J. Cell Sci., 114 (Part 23), 4185–4195.

  • Korff T and Augustin HG . (1999). J. Cell Sci., 112 (Part 19), 3249–3258.

  • Lee P, Goishi K, Davidson AJ, Mannix R, Zon L and Klagsbrun M . (2002). Proc. Natl. Acad. Sci. USA, 99, 10470–10475.

  • Li W, Hack N, Margolis B, Ullrich A, Skorecki K and Schlessinger J . (1991). Cell Regul., 2, 641–649.

  • Mashiba S, Mochida S, Ishikawa K, Inao M, Matsui A, Ohno A, Ikeda H, Nagoshi S, Shibuya M and Fujiwara K . (1999). Biochem. Biophys. Res. Commun., 258, 674–678.

  • Meyer RD, Dayanir V, Majnoun F and Rahimi N . (2002). J. Biol. Chem., 277, 27081–27087.

  • Meyer RD, Latz C and Rahimi N . (2003). J. Biol. Chem., 278, 16347–16355.

  • Meyer RD, Singh AJ and Rahimi N . (2004). J. Biol. Chem., 279, 735–742.

  • Mossie K, Jallal B, Alves F, Sures I, Plowman GD and Ullrich A . (1995). Oncogene, 11, 2179–2184.

  • Neufeld G, Cohen T, Gengrinovitch S and Poltorak Z . (1999). FASEB J., 13, 9–22.

  • Neufeld G, Cohen T, Gitay-Goren H, Poltorak Z, Tessler S, Sharon R, Gengrinovitch S and Levi BZ . (1996). Cancer Metastasis Rev., 15, 153–158.

  • Niu XL, Peters KG and Kontos CD . (2002). J. Biol. Chem., 277, 31768–31773.

  • Parks AL, Klueg KM, Stout JR and Muskavitch MA . (2000). Development, 127, 1373–1385.

  • Rahimi N, Dayanir V and Lashkari K . (2000). J. Biol. Chem., 275, 16986–16992.

  • Seedorf K, Millauer B, Kostka G, Schlessinger J and Ullrich A . (1992). Mol. Cell. Biol., 12, 4347–4356.

  • Shalaby F, Rossant J, Yamaguchi TP, Gertsenstein M, Wu XF, Breitman ML and Schuh AC . (1995). Nature, 376, 62–66.

  • Shibuya M . (2001). Cell Struct. Funct., 26, 25–35 (Review).

  • Soker S, Takashima S, Miao HQ, Neufeld G and Klagsbrun M . (1998). Cell, 92, 735–745.

  • Sorkin A and Von Zastrow M . (2002). Nat. Rev. Mol. Cell Biol., 3, 600–614.

  • Suarez S and Ballmer-Hofer K . (2001). J. Cell Sci., 114 (Part 6), 1229–1235.

  • Waltenberger J, Claesson-Welsh L, Siegbahn A, Shibuya M and Heldin CH . (1994). J. Biol. Chem., 269, 26988–26995.

  • Walton GM, Chen WS, Rosenfeld MG and Gill GN . (1990). J. Biol. Chem., 265, 1750–1754.

  • Yancopoulos GD, Davis S, Gale NW, Rudge JS, Wiegand SJ and Holash J . (2000). Nature, 407, 242–248.

  • Zeng H, Zhao D, Yang S, Datta K and Mukhopadhyay D . (2003). J. Biol. Chem., 278, 20738–20745.

Download references

Acknowledgements

This work was supported in part grants from National Institute of Health (NIH) EY 0137061, EY012997, RPB Career Development Award (to NR) and Massachusetts Lions Eye Research Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nader Rahimi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meyer, R., Singh, A., Majnoun, F. et al. Substitution of C-terminus of VEGFR-2 with VEGFR-1 promotes VEGFR-1 activation and endothelial cell proliferation. Oncogene 23, 5523–5531 (2004). https://doi.org/10.1038/sj.onc.1207712

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1207712

Keywords

This article is cited by

Search

Quick links