Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

Deacetylation of p53 after nerve growth factor treatment in PC12 cells as a post-translational modification mechanism of neurotrophin-induced tumor suppressor activation

Abstract

The tumor suppressor protein p53 is a transcription factor that regulates the response to cellular insults such as DNA damage and growth factor withdrawal. Transcriptional activity of p53 requires post-translational modification by phosphorylation and acetylation. This study used site-specific antibodies to demonstrate that nerve growth factor (NGF) treatment of PC12 cells results in p53 deacetylation at lysine (Lys) 382. Histone deacetylase (HDAC) activity, measured by a direct fluorescent assay, was increased after NGF treatment and peaked before p53 deacetylation. Inhibition of HDAC by trichostatin blocked the deacetylation of p53 and its transcriptional activity toward a reporter gene construct. Comparison of PC12 with PC12 cells containing a temperature-sensitive, dominant-negative construct showed that p53 deacetylation required functional p53. Inhibitors of MAP kinase that block p53 transactivation and inhibitors of TrkA receptor also abolished HDAC activation, indicating that deacetylation of p53 is an NGF-dependent post-translational mechanism of p53 activation. Finally, NGF or serum withdrawal did not lead to p53 deacetylation. A model is proposed in which the acetylation status of Lys 382 of p53 discriminates between cell cycle arrest and apoptosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Abbreviations

CBP:

CREB binding protein

EGF:

epidermal growth factor

FGF:

fibroblast growth factor

HDAC:

histone deacetylase

MEK1:

MAP kinase or ERK kinase kinase

NGF:

nerve growth factor

p53:

tumor suppressor p53

p300:

acetylase

PCAF:

p300 and CREB binding protein-associated factor

PBS:

phosphate-buffered saline

SAHA:

suberoylanilide hydroxamic acid

SDS:

sodium dodecyl sulfate

TNF-α:

tumor necrosis factor-alpha

TSA:

trichostatin A

References

  • Alessi DR, Cuenda A, Cohen P, Dudley DT and Saltiel AR . (1995). J. Biol. Chem., 270, 27489–27494.

  • Ballas N, Battaglioli E, Atouf F, Andres ME, Chenoweth J, Anderson ME, Burger C, Moniwa M, Davie JR, Bowers WJ, Federoff HJ, Rose DW, Rosenfeld MG, Brehm P and Mandel G . (2001). Neuron, 31, 353–365.

  • Bayle JH and Crabtree GR . (1997). Chem. Biol., 4, 885–888.

  • Ben-Dori R, Resnitzki D and Kimchi A . (1983). FEBS Lett., 162, 384–389.

  • Billon N, van Grunsven LA and Rudkin BB . (1996). Oncogene, 13, 2047–2054.

  • Blaydes JP, Luciani MG, Pospisilova S, Ball HM, Vojtesek B and Hupp TR . (2001). J. Biol. Chem., 276, 4699–4708.

  • Boonstra J, van der Saag PT, Feijen A, Bisschop A and de Laat S . (1985). Biochimie, 67, 1177–1183.

  • Boulikas T . (1995). Crit. Rev. Eukaryot. Gene Expr., 5, 1–77.

  • Budihardjo I, Oliver H, Lutter M, Luo X and Wang X . (1999). Annu. Rev. Cell Dev. Biol., 15, 269–290.

  • Chandrasekaran K, Mora PT, Nagarajan L and Anderson WB . (1982). J. Cell. Physiol., 113, 134–140.

  • Chehab NH, Malikzay A, Stavridi ES and Halazonetis TD . (1999). Proc. Natl. Acad. Sci. USA, 96, 13777–13782.

  • Choi HS, Lee JH, Park JG and Lee YI . (2002). Biochem. Biophys. Res. Commun., 296, 1005–1012.

  • Craig AL, Blaydes JP, Burch LR, Thompson AM and Hupp TR . (1999a). Oncogene, 18, 6305–6312.

  • Craig AL, Burch L, Vojtesek B, Mikutowska J, Thompson A and Hupp TR . (1999b). Biochem. J., 342, 133–141.

  • Cregan SP, MacLaurin JG, Craig CG, Robertson GS, Nicholson DW, Park DS and Slack RS . (1999). J. Neurosci., 19, 7860–7869.

  • de Ruijter AJ, van Gennip AH, Caron HN, Kemp S and van Kuilenburg AB . (2003). Biochem. J., 370, 737–749.

  • Dornan D, Shimizu H, Perkins ND and Hupp TR . (2003). J. Biol. Chem., 278, 13431–13441.

  • Dudley DT, Pang L, Decker SJ, Bridges AJ and Saltiel AR . (1995). Proc. Natl. Acad. Sci. USA, 93, 7686–7689.

  • Espinosa JM and Emerson BM . (2001). Mol. Cell, 8, 57–69.

  • Furumai R, Komatsu Y, Nishino N, Khochbin S, Yoshida M and Horinouchi S . (2001). Proc. Natl. Acad. Sci. USA, 98, 87–92.

  • Gartenhaus RB, Wang P and Hoffmann P . (1996). Proc. Natl. Acad. Sci. USA, 93, 265–268.

  • Gasser SM and Cockell MM . (2001). Gene, 279, 1–16.

  • Gollapudi L and Neet KE . (1997). J. Neurosci. Res., 49, 461–474.

  • Greene LA and Tischler AS . (1976). Proc. Natl. Acad. Sci. USA, 73, 2424–2428.

  • Grimes JA, Nielsen SJ, Battaglioli E, Miska EA, Speh JC, Berry DL, Atouf F, Holdener BC, Mandel G and Kouzarides T . (2000). J. Biol. Chem., 275, 9461–9467.

  • Grossman SR . (2001). Eur. J. Biochem., 268, 2773–2778.

  • Gu W and Roeder RG . (1997). Cell, 90, 595–606.

  • Gu W, Shi XL and Roeder RG . (1997). Nature, 387, 819–823.

  • Heneka MT, Loschmann PA, Gleichmann M, Weller M, Schulz JB, Wullner U and Klockgether T . (1998). J. Neurochem., 71, 88–94.

  • Higashimoto Y, Saito S, Tong XH, Hong A, Sakaguchi K, Appella E and Anderson CW . (2000). J. Biol. Chem., 275, 23199–23203.

  • Hughes AL, Gollapudi L, Sladek TL and Neet KE . (2000). J. Biol. Chem., 275, 37829–37837.

  • Hupp TR and Lane DP . (1995). J. Biol. Chem., 270, 18165–18174.

  • Ito A, Lai CH, Zhao X, Saito S, Hamilton MH, Appella E and Yao TP . (2001). EMBO J., 20, 1331–1340.

  • Iwasaki S, Iguchi M, Watanabe K, Hoshino R, Tsujimoto M and Kohno M . (1999). J. Biol. Chem., 274, 26503–26510.

  • Jabbur JR, Huang P and Zhang W . (2001). Int. J. Mol. Med., 7, 163–168.

  • Juan LJ, Shia WJ, Chen MH, Yang WM, Seto E, Lin YS and Wu CW . (2000). J. Biol. Chem., 275, 20436–20443.

  • Kimura K, Hattori S, Kabuyama Y, Shizawa Y, Takayanagi J, Nakamura S, Toki S, Matsuda Y, Onodera K and Fukui Y . (1994). J. Biol. Chem., 269, 18961–18967.

  • Kobet E, Zeng X, Zhu Y, Keller D and Lu H . (2000). Proc. Natl. Acad. Sci. USA, 97, 12547–12552.

  • Lad SP, Neet KE and Mufson EJ . (2003). Curr. Drug Target CNS Neurol. Disord., 2, 315–334.

  • Lakin ND and Jackson SP . (1999). Oncogene, 18, 7644–7655.

  • Langley E, Pearson M, Faretta M, Bauer UM, Frye RA, Minucci S, Pelicci PG and Kouzarides T . (2002). EMBO J., 21, 2383–2396.

  • Lee V, Shelanski ML and Greene LA . (1977). Proc. Natl. Acad. Sci. USA, 74, 5021–5025.

  • Lehrmann H, Pritchard LL and Harel-Bellan A . (2002). Adv. Cancer Res., 86, 41–65.

  • Liu M and Pelling JC . (1995). Oncogene, 10, 1955–1960.

  • Luckenbill-Edds L, Van Horn C and Greene LA . (1979). J. Neurocytol., 8, 493–511.

  • Luo J, Nikolaev AY, Imai S, Chen D, Su F, Shiloh A, Guarente L and Gu W . (2001). Cell, 107, 137–148.

  • Luo J, Su F, Chen D, Shiloh A and Gu W . (2000). Nature, 408, 377–381.

  • Luo Y and Neet KE . (1992). J. Biol. Chem., 267, 12275–12283.

  • Makris A, Powles TJ, Dowsett M and Allred C . (1995). Lancet, 345, 1181–1182.

  • Martinou I, Fernandez PA, Missotten M, White E, Allet B, Sadoul R and Martinou JC . (1995). J. Cell Biol., 128, 201–208.

  • Mauser A, Saito S, Appella E, Anderson CW, Seaman WT and Kenney S . (2002). J. Virol., 76, 12503–12512.

  • Maxwell SA, Roth JA and Mukhopadhyay T . (1996). Electrophoresis, 17, 1772–1775.

  • McGuire JC and Greene LA . (1979). J. Biol. Chem., 254, 3362–3367.

  • Meek DW . (1994). Semin. Cancer Biol., 5, 203–210.

  • Merrick BA, Zhou W, Martin KJ, Jeyarajah S, Parker CE, Selkirk JK, Tomer KB and Borchers CH . (2001). Biochemistry, 40, 4053–4066.

  • Milczarek GJ, Martinez J and Bowden GT . (1997). Life Sci., 60, 1–11.

  • Morrison RS, Kinoshita Y, Johnson MD, Guo W and Garden GA . (2003). Neurochem. Res., 28, 15–27.

  • Nagy L, Kao HY, Chakravarti D, Lin RJ, Hassig CA, Ayer DE, Schreiber SL and Evans RM . (1997). Cell, 89, 373–380.

  • Neet KE and Campenot RB . (2001). Cell Mol. Life Sci., 58, 1021–1035.

  • Ohmichi M, Decker SJ, Pang L and Saltiel AR . (1992). Biochemistry, 31, 4034–4039.

  • Oren M, Reich NC and Levine AJ . (1982). Mol. Cell. Biol., 2, 443–449.

  • Park DS, Stefanis L, Yan CY, Farinelli SE and Greene LA . (1996). J. Biol. Chem., 271, 21898–21905.

  • Parker SB, Eichele G, Zhang P, Rawls A, Sands AT, Bradley A, Olson EN, Harper JW and Elledge SJ . (1995). Science, 267, 1024–1027.

  • Pise-Masison CA, Radonovich M, Sakaguchi K, Appella E and Brady JN . (1998). J. Virol., 72, 6348–6355.

  • Roeder RG . (1998). Cold Spring Harb. Symp. Quant. Biol., 63, 201–218.

  • Scotto C, Delphin C, Deloulme JC and Baudier J . (1999). Mol. Cell. Biol., 19, 7168–7180.

  • Selter H and Montenarh M . (1994). Int. J. Biochem., 26, 145–154.

  • Shiseki M, Nagashima M, Pedeux RM, Kitahama-Shiseki M, Miura K, Okamura S, Onogi H, Higashimoto Y, Appella E, Yokota J and Harris CC . (2003). Cancer Res., 63, 2373–2378.

  • Simpson MT, MacLaurin JG, Xu D, Ferguson KL, Vanderluit JL, Davoli MA, Roy S, Nicholson DW, Robertson GS, Park DS and Slack RS . (2001). J. Neurosci., 21, 7089–7098.

  • Sladek TL and Jacobberger JW . (1992). Oncogene, 7, 1305–1313.

  • Stefanis L, Park DS, Yan CY, Farinelli SE, Troy CM, Shelanski ML and Greene LA . (1996). J. Biol. Chem., 271, 30663–30671.

  • Tapley P, Lamballe F and Barbacid M . (1992). Oncogene, 7, 371–381.

  • Togari A, Baker D, Dickens G and Guroff G . (1983). Biochem. Biophys. Res. Commun., 114, 1189–1193.

  • Traverse S, Gomez N, Paterson H, Marshall C and Cohen P . (1992). Biochem. J., 288, 351–355.

  • Vaghefi H, Hughes AL and Neet KE . (2004). J. Biol. Chem., 279, 15604–15614.

  • Vaziri H, Dessain SK, Ng Eaton E, Imai SI, Frye RA, Pandita TK, Guarente L and Weinberg RA . (2001). Cell, 107, 149–159.

  • Vousden KH and Lu X . (2002). Nat. Rev. Cancer, 2, 594–604.

  • Webley K, Bond JA, Jones CJ, Blaydes JP, Craig A, Hupp T and Wynford-Thomas D . (2000). Mol. Cell. Biol., 20, 2803–2808.

  • Wert MM and Palfrey HC . (2000). Biochem. J., 352, 175–182.

  • Woo SB, Timm DE and Neet KE . (1995). J. Biol. Chem., 270, 6278–6285.

  • Woods DB and Vousden KH . (2001). Exp. Cell Res., 264, 56–66.

  • Wu X and Levine AJ . (1994). Proc. Natl. Acad. Sci. USA, 91, 3602–3606.

  • Yao R and Cooper GM . (1995). Science, 267, 2003–2006.

  • Zeng L, Zhang Y, Chien S, Liu X and Shyy JY . (2003). J. Biol. Chem., 278, 24594–24599.

  • Zhan Q, Fan S, Bae I, Guillouf C, Liebermann DA, O'Connor PM and Fornace Jr AJ. (1994). Oncogene, 9, 3743–3751.

  • Zhong LT, Sarafian T, Kane DJ, Charles AC, Mah SP, Edwards RH and Bredesen DE . (1993). Proc. Natl. Acad. Sci. USA, 90, 4533–4537.

Download references

Acknowledgements

This work was supported by a grant from the USPHS, National Institutes of Health, NINDS, NS24380 to KEN. We thank Laurie Dvorak, Sang B Woo, and Nandan Lad for useful discussions and Debbie Messineo-Jones for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth E Neet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vaghefi, H., Neet, K. Deacetylation of p53 after nerve growth factor treatment in PC12 cells as a post-translational modification mechanism of neurotrophin-induced tumor suppressor activation. Oncogene 23, 8078–8087 (2004). https://doi.org/10.1038/sj.onc.1207953

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1207953

Keywords

This article is cited by

Search

Quick links