Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Cell cycle-dependent transcription in yeast: promoters, transcription factors, and transcriptomes

Abstract

In the budding yeast, Saccharomyces cerevisiae, a significant fraction of genes (>10%) are transcribed with cell cycle periodicity. These genes encode critical cell cycle regulators as well as proteins with no direct connection to cell cycle functions. Cell cycle-regulated genes can be organized into ‘clusters’ exhibiting similar patterns of regulation. In most cases periodic transcription is achieved via both repressive and activating mechanisms. Fine-tuning appears to have evolved by the juxtaposition of regulatory motifs characteristic of more than one cluster within the same promoter. Recent reports have provided significant new insight into the role of the cyclin-dependent kinase Cdk1 (Cdc28) in coordination of transcription with cell cycle events. In early G1, the transcription factor complex known as SBF is maintained in a repressed state by association of the Whi5 protein. Phosphorylation of Whi5 by Cdk1 in late G1 leads to dissociation from SBF and transcriptional derepression. G2/M-specific transcription is achieved by converting the repressor Fkh2 into an activator. Fkh2 serves as a repressor during most of the cell cycle. However, phosphorylation of a cofactor, Ndd1, by Cdk1 late in the cell cycle promotes binding to Fkh2 and conversion into a transcriptional activator. Such insights derived from analysis of specific genes when combined with genome-wide analysis provide a more detailed and integrated view of cell cycle-dependent transcription.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Purchase on Springer Link

Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • Amon A . (2002). Methods Enzymol., 351, 457–467.

  • Amon A, Tyers M, Futcher B and Nasmyth K . (1993). Cell, 74, 993–1007.

  • Bardwell L, Cook JG, Zhu-Shimoni JX, Voora D and Thorner J . (1998). Proc. Natl. Acad. Sci. USA, 95, 15400–15405.

  • Breeden L . (1996). Curr. Top. Microbiol. Immunol., 208, 95–127.

  • Breitkreutz A, Boucher L, Breitkreutz BJ, Sultan M, Jurisica I and Tyers M . (2003). Genetics, 165, 997–1015.

  • Cho RJ, Campbell MJ, Winzeler EA, Steinmetz L, Conway A, Wodicka L, Wolfsberg TG, Gabrielian AE, Landsman D, Lockhart DJ and Davis RW . (1998). Mol. Cell, 2, 65–73.

  • Cho RJ, Huang M, Campbell MJ, Dong H, Steinmetz L, Sapinoso L, Hampton G, Elledge SJ, Davis RW and Lockhart DJ . (2001). Nat. Genet., 27, 48–54.

  • Costanzo M, Nishikawa JL, Tang X, Millman JS, Schub O, Breitkreuz K, Dewar D, Rupes I, Andrews B and Tyers M . (2004). Cell, 117, 899–913.

  • Costanzo M, Schub O and Andrews B . (2003). Mol. Cell. Biol., 23, 5064–5077.

  • Cross FR . (1988). Mol. Cell. Biol., 8, 4675–4684.

  • Cross FR and Tinklenberg AH . (1991). Cell, 65, 875–883.

  • de Bruin RA, McDonald WH, Kalashnikova TI, Yates III J and Wittenberg C . (2004). Cell, 117, 887–898.

  • Di Como CJ, Chang H and Arndt KT . (1995). Mol. Cell. Biol., 15, 1835–1846.

  • Dirick L, Bohm T and Nasmyth K . (1995). EMBO J., 14, 4803–4813.

  • Dirick L and Nasmyth K . (1991). Nature, 351, 754–757.

  • Dohrmann PR, Voth WP and Stillman DJ . (1996). Mol. Cell. Biol., 16, 1746–1758.

  • Doolin MT, Johnson AL, Johnston LH and Butler G . (2001). Mol. Microbiol., 40, 422–432.

  • Dyson N . (1998). Genes Dev., 12, 2245–2262.

  • Edgington NP and Futcher B . (2001). J. Cell Sci., 114, 4599–4611.

  • Epstein CB and Cross FR . (1994). Mol. Cell. Biol., 14, 2041–2047.

  • Futcher B . (2002). Curr. Opin. Cell. Biol., 14, 676–683.

  • Gallego C, Gari E, Colomina N, Herrero E and Aldea M . (1997). EMBO J., 16, 7196–7206.

  • Gari E, Volpe T, Wang H, Gallego C, Futcher B and Aldea M . (2001). Genes Dev., 15, 2803–2808.

  • Geymonat M, Spanos A, Wells GP, Smerdon SJ and Sedgwick SG . (2004). Mol. Cell. Biol., 24, 2277–2285.

  • Ghiara JB, Richardson HE, Sugimoto K, Henze M, Lew DJ, Wittenberg C and Reed SI . (1991). Cell, 65, 163–174.

  • Haase SB and Reed SI . (1999). Nature, 401, 394–397.

  • Hall C, Nelson DM, Ye X, Baker K, DeCaprio JA, Seeholzer S, Lipinski M and Adams PD . (2001). Mol. Cell. Biol., 21, 1854–1865.

  • Hall DD, Markwardt DD, Parviz F and Heideman W . (1998). EMBO J., 17, 4370–4378.

  • Ho Y, Mason S, Kobayashi R, Hoekstra M and Andrews B . (1997). Proc. Natl. Acad. Sci. USA, 94, 581–586.

  • Hollenhorst PC, Pietz G and Fox CA . (2001). Genes Dev., 15, 2445–2456.

  • Horak CE and Snyder M . (2002). Funct. Integr. Genomics, 2, 171–180.

  • Hwang-Shum JJ, Hagen DC, Jarvis EE, Westby CA and Sprague Jr GF . (1991). Mol. Gen. Genet., 227, 197–204.

  • Iyer VR, Horak CE, Scafe CS, Botstein D, Snyder M and Brown PO . (2001). Nature, 409, 533–538.

  • Jorgensen P, Nishikawa JL, Breitkreutz BJ and Tyers M . (2002). Science, 297, 395–400.

  • Kato M, Hata N, Banerjee N, Futcher B and Zhang MQ . (2004). Genome Biol., 5, R56.

  • Koch C, Moll T, Neuberg M, Ahorn H and Nasmyth K . (1993). Science, 261, 1551–1557.

  • Komeili A and O'Shea EK . (1999). Science, 284, 977–980.

  • Koranda M, Schleiffer A, Endler L and Ammerer G . (2000). Nature, 406, 94–98.

  • Kumar R, Reynolds DM, Shevchenko A, Goldstone SD and Dalton S . (2000). Curr. Biol., 10, 896–906.

  • Kusari AB, Molina DM, Sabbagh Jr W, Lau CS and Bardwell L . (2004). J. Cell Biol., 164, 267–277.

  • Lee TI, Rinaldi NJ, Robert F, Odom DT, Bar-Joseph Z, Gerber GK, Hannett NM, Harbison CT, Thompson CM, Simon I, Zeitlinger J, Jennings EG, Murray HL, Gordon DB, Ren B, Wyrick JJ, Tagne JB, Volkert TL, Fraenkel E, Gifford DK and Young RA . (2002). Science, 298, 799–804.

  • Lenburg ME and O'Shea EK . (1996). Trends Biochem. Sci., 21, 383–387.

  • Leung TW, Lin SS, Tsang AC, Tong CS, Ching JC, Leung WY, Gimlich R, Wong GG and Yao KM . (2001). FEBS Lett., 507, 59–66.

  • Loy CJ, Lydall D and Surana U . (1999). Mol. Cell. Biol., 19, 3312–3327.

  • Lydall D, Ammerer G and Nasmyth K . (1991). Genes Dev., 5, 2405–2419.

  • MacKay VL, Mai B, Waters L and Breeden LL . (2001). Mol. Cell. Biol., 21, 4140–4148.

  • Marini NJ and Reed SI . (1992). Genes Dev., 6, 557–567.

  • McBride HJ, Yu Y and Stillman DJ . (1999). J. Biol. Chem., 274, 21029–21036.

  • McInerny CJ, Partridge JF, Mikesell GE, Creemer DP and Breeden LL . (1997). Genes Dev., 11, 1277–1288.

  • Miller ME and Cross FR . (2000). Mol. Cell. Biol., 20, 542–555.

  • Morgan BA, Bouquin N, Merrill GF and Johnston LH . (1995). EMBO J., 14, 5679–5689.

  • Morillon A, O'Sullivan J, Azad A, Proudfoot N and Mellor J . (2003). Science, 300, 492–495.

  • Nash R, Tokiwa G, Anand S, Erickson K and Futcher AB . (1988). EMBO J., 7, 4335–4346.

  • Nasmyth K, Seddon A and Ammerer G . (1987). Cell, 49, 549–558.

  • Neef DW and Kladde MP . (2003). Mol. Cell. Biol., 23, 3788–3797.

  • Nevins JR . (2001). Hum. Mol. Genet., 10, 699–703.

  • Ng HH, Robert F, Young RA and Struhl K . (2002). Genes Dev., 16, 806–819.

  • Nurrish SJ and Treisman R . (1995). Mol. Cell. Biol., 15, 4076–4085.

  • Oehlen LJ, McKinney JD and Cross FR . (1996). Mol. Cell. Biol., 16, 2830–2837.

  • Osley MA, Gould J, Kim S, Kane MY and Hereford L . (1986). Cell, 45, 537–544.

  • Partridge JF, Mikesell GE and Breeden LL . (1997). J. Biol. Chem., 272, 9071–9077.

  • Parviz F, Hall DD, Markwardt DD and Heideman W . (1998). J. Bacteriol., 180, 4508–4515.

  • Pic A, Lim FL, Ross SJ, Veal EA, Johnson AL, Sultan MR, West AG, Johnston LH, Sharrocks AD and Morgan BA . (2000). EMBO J., 19, 3750–3761.

  • Polymenis M and Schmidt EV . (1997). Genes Dev., 11, 2522–2531.

  • Pramila T, Miles S, GuhaThakurta D, Jemiolo D and Breeden LL . (2002). Genes Dev., 16, 3034–3045.

  • Queralt E and Igual JC . (2003). Mol. Cell. Biol., 23, 3126–3140.

  • Reynolds D, Shi BJ, McLean C, Katsis F, Kemp B and Dalton S . (2003). Genes Dev., 17, 1789–1802.

  • Rustici G, Mata J, Kivinen K, Lio P, Penkett CJ, Burns G, Hayles J, Brazma A, Nurse P and Bahler J . (2004). Nat. Genet., 36, 809–817.

  • Sherwood PW, Tsang SV and Osley MA . (1993). Mol. Cell. Biol., 13, 28–38.

  • Shore P and Sharrocks AD . (1995). Eur. J. Biochem., 229, 1–13.

  • Sidorova JM, Mikesell GE and Breeden LL . (1995). Mol. Biol. Cell, 6, 1641–1658.

  • Siegmund RF and Nasmyth KA . (1996). Mol. Cell. Biol., 16, 2647–2655.

  • Simon I, Barnett J, Hannett N, Harbison CT, Rinaldi NJ, Volkert TL, Wyrick JJ, Zeitlinger J, Gifford DK, Jaakkola TS and Young RA . (2001). Cell, 106, 697–708.

  • Spellman PT, Sherlock G, Zhang MQ, Iyer VR, Anders K, Eisen MB, Brown PO, Botstein D and Futcher B . (1998). Mol. Biol. Cell, 9, 3273–3297.

  • Struhl K . (1983). Nature, 305, 391–397.

  • Stuart D and Wittenberg C . (1995). Genes Dev., 9, 2780–2794.

  • Surana U, Robitsch H, Price C, Schuster T, Fitch I, Futcher AB and Nasmyth K . (1991). Cell, 65, 145–161.

  • Thomas D and Surdin-Kerjan Y . (1997). Microbiol. Mol. Biol. Rev., 61, 503–532.

  • Tyers M, Tokiwa G and Futcher B . (1993). EMBO J., 12, 1955–1968.

  • Tyers M, Tokiwa G, Nash R and Futcher B . (1992). EMBO J., 11, 1773–1784.

  • Ubersax JA, Woodbury EL, Quang PN, Paraz M, Blethrow JD, Shah K, Shokat KM and Morgan DO . (2003). Nature, 425, 859864.

  • van Drogen F, Stucke VM, Jorritsma G and Peter M . (2001). Nat. Cell Biol., 3, 1051–1059.

  • Wang H, Gari E, Verges E, Gallego C and Aldea M . (2004). EMBO J., 23, 180–190.

  • Wang X, Kiyokawa H, Dennewitz MB and Costa RH . (2002). Proc. Natl. Acad. Sci. USA, 99, 16881–16886.

  • Whitaker M . (1997). Prog. Cell Cycle Res., 3, 261–269.

  • Whitfield ML, Sherlock G, Saldanha AJ, Murray JI, Ball CA, Alexander KE, Matese JC, Perou CM, Hurt MM, Brown PO and Botstein D . (2002). Mol. Biol. Cell, 13, 1977–2000.

  • Wijnen H and Futcher B . (1999). Genetics, 153, 1131–1143.

  • Wijnen H, Landman A and Futcher B . (2002). Mol. Cell. Biol., 22, 4402–4418.

  • Withee JL, Sen R and Cyert MS . (1998). Genetics, 149, 865–878.

  • Wittenberg C and Reed SI . (1991). Crit. Rev. Eukaryot. Gene Expr., 1, 189–205.

  • Zhang J, Schneider C, Ottmers L, Rodriguez R, Day A, Markwardt J and Schneider BL . (2002). Curr. Biol., 12, 1992–2001.

  • Zhu G, Spellman PT, Volpe T, Brown PO, Botstein D, Davis TN and Futcher B . (2000). Nature, 406, 90–94.

Download references

Acknowledgements

We thank all of the investigators whose research has contributed to our understanding of cell cycle-regulated transcription in yeast, and apologize to those who have been overlooked in the interest of brevity. We thank Rob de Bruin for comments on the manuscript and members of the TSRI Cell Cycle Group for their interest and support. Research concerning cell cycle-regulated transcription in our own laboratories is supported by funding from the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven I Reed.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wittenberg, C., Reed, S. Cell cycle-dependent transcription in yeast: promoters, transcription factors, and transcriptomes. Oncogene 24, 2746–2755 (2005). https://doi.org/10.1038/sj.onc.1208606

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1208606

Keywords

This article is cited by

Search

Quick links