Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

BARX2 and estrogen receptor-α (ESR1) coordinately regulate the production of alternatively spliced ESR1 isoforms and control breast cancer cell growth and invasion

Abstract

The estrogen receptor-α gene (ESR1) was previously identified as a direct target of the homeobox transcription factor BARX2 in MCF7 cells. Here, we show that BARX2 and ESR1 proteins bind to different ESR1 gene promoters and regulate the expression of alternatively spliced mRNAs that encode 66 and 46 kDa ESR1 protein isoforms. BARX2 increases the expression of both ESR1 isoforms; however, it has a greater effect on the 46 kDa isoform, leading to an increased ratio between the 46 and 66 kDa proteins. BARX2 also influences estrogen-dependent processes such as anchorage-independent growth and modulates the expression of the estrogen-responsive genes SOX5, RBM15, Dynein and Mortalin. In addition, BARX2 expression promotes cellular invasion and increases the expression of active matrix metalloproteinase-9 (MMP9). BARX2 also increases the expression of the tissue inhibitor of metalloproteinase (TIMP) genes, TIMP1 and TIMP3, in cooperation with estrogen signaling. Overall, these data indicate that BARX2 and ESR1 may coordinately regulate cell growth, survival and invasion pathways that are critical to breast cancer progression.

This is a preview of subscription content, access via your institution

Access options

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Auboeuf D, Dowhan DH, Dutertre M, Martin N, Berget SM, O'Malley BW . (2005). Mol Cell Biol 25: 5307–5316.

  • Auboeuf D, Dowhan DH, Li X, Larkin K, Ko L, Berget SM et al. (2004). Mol Cell Biol 24: 442–453.

  • Auboeuf D, Honig A, Berget SM, O'Malley BW . (2002). Science 298: 416–419.

  • Balduyck M, Zerimech F, Gouyer V, Lemaire R, Hemon B, Grard G et al. (2000). Clin Exp Metast 18: 171–178.

  • Care A, Felicetti F, Meccia E, Bottero L, Parenza M, Stoppacciaro A et al. (2001). Cancer Res 61: 6532–6539.

  • Chakraborti S, Mandal M, Das S, Mandal A, Chakraborti T . (2003). Mol Cell Biochem 253: 269–285.

  • Cramer P, Caceres JF, Cazalla D, Kadener S, Muro AF, Baralle FE et al. (1999). Mol Cell 4: 251–258.

  • Cramer P, Pesce CG, Baralle FE, Kornblihtt AR . (1997). Proc Natl Acad Sci USA 94: 11456–11460.

  • Debnath J, Muthuswamy SK, Brugge JS . (2003). Methods 30: 256–268.

  • Denger S, Reid G, Kos M, Flouriot G, Parsch D, Brand H et al. (2001). Mol Endocrinol 15: 2064–2077.

  • Egeblad M, Werb Z . (2002). Nat Rev Cancer 2: 161–174.

  • Fasco MJ, Keyomarsi K, Arcaro KF, Gierthy JF . (2000). Mol Cell Endocrinol 162: 167–180.

  • Fata JE, Leco KJ, Moorehead RA, Martin DC, Khokha R . (1999). Dev Biol 211: 238–254.

  • Fienberg AA, Utset MF, Bogarad LD, Hart CP, Awgulewitsch A, Ferguson-Smith A et al. (1987). Curr Top Dev Biol 23: 233–256.

  • Flouriot G, Brand H, Denger S, Metivier R, Kos M, Reid G et al. (2000). EMBO J 19: 4688–4700.

  • Flouriot G, Griffin C, Kenealy M, Sonntag-Buck V, Gannon F . (1998). Mol Endocrinol 12: 1939–1954.

  • Gill SE, Pape MC, Khokha R, Watson AJ, Leco KJ . (2003). Dev Biol 261: 313–323.

  • Gomez DE, Alonso DF, Yoshiji H, Thorgeirsson UP . (1997). Eur J Cell Biol 74: 111–122.

  • Heery DM, Kalkhoven E, Hoare S, Parker MG . (1997). Nature 387: 733–736.

  • Herring BP, Kriegel AM, Hoggatt AM . (2001). J Biol Chem 276: 14482–14489.

  • Hong H, Kohli K, Garabedian MJ, Stallcup MR . (1997). Mol Cell Biol 17: 2735–2744.

  • Jones FS, Kioussi C, Copertino DW, Kallunki P, Holst BH, Edelman GM . (1997). Proc Natl Acad Sci USA 94: 2632–2637.

  • Krasner A, Wallace L, Thiagalingam A, Jones C, Lengauer C, Minahan L et al. (2000). Gene 250: 171–180.

  • Lambertini E, Penolazzi L, Giordano S, Del Senno L, Piva R . (2003). Biochem J 372: 831–839.

  • Lelongt B, Trugnan G, Murphy G, Ronco PM . (1997). J Cell Biol 136: 1363–1373.

  • Li G, Fridman R, Kim HR . (1999). Cancer Res 59: 6267–6275.

  • Liu D, Buluwela L, Ali S, Thomson S, Gomm JJ, Coombes RC . (2001). Eur J Cancer 37: 268–280.

  • Liu XW, Bernardo MM, Fridman R, Kim HR . (2003). J Biol Chem 278: 40364–40372.

  • Mark M, Rijli FM, Chambon P . (1997). Pediatr Res 42: 421–429.

  • McDonnell DP . (1999). Trends Endocrinol Metab 10: 301–311.

  • Meech R, Edelman DB, Jones FS, Makarenkova HP . (2005). Dev 132: 2135–2146.

  • Meech R, Makarenkova H, Edelman DB, Jones FS . (2003). J Biol Chem 278: 8269–8278.

  • Metivier R, Penot G, Carmouche RP, Hubner MR, Reid G, Denger S et al. (2004). EMBO J 23: 3653–3666.

  • Nguyen M, Arkell J, Jackson CJ . (1998). J Biol Chem 273: 5400–5404.

  • Nothnick WB, Zhang X, Zhou HE . (2004). Biol Reprod 70: 500–508.

  • O'Doherty AM, Church SW, Russell SE, Nelson J, Hickey I . (2002). Br J Cancer 86: 282–284.

  • Penot G, Le Peron C, Merot Y, Grimaud-Fanouillere E, Ferriere F, Boujrad N et al. (2005). Endocrinology 8: 8.

  • Rayala SK, den Hollander P, Balasenthil S, Yang Z, Broaddus RR, Kumar R . (2005). EMBO Rep 6: 538–544.

  • Samady L, Dennis J, Budhram-Mahadeo V, Latchman DS . (2004). Cancer Biol Ther 3: 317–323.

  • Satoh K, Ginsburg E, Vonderhaar BK . (2004). J Mammary Gland Biol Neoplasia 9: 195–205.

  • Schratt G, Philippar U, Berger J, Schwarz H, Heidenreich O, Nordheim A . (2002). J Cell Biol 156: 737–750.

  • Sellar GC, Li L, Watt KP, Nelkin BD, Rabiasz GJ, Stronach EA et al. (2001). Cancer Res 61: 6977–6981.

  • Shin SI, Freedman VH, Risser R, Pollack R . (1975). Proc Natl Acad Sci USA 72: 4435–4439.

  • Sivak JM, West-Mays JA, Yee A, Williams T, Fini ME . (2004). Mol Cell Biol 24: 245–257.

  • Smith CL, Onate SA, Tsai MJ, O'Malley BW . (1996). Proc Natl Acad Sci USA 93: 8884–8888.

  • Sternlicht MD, Werb Z . (2001). Annu Rev Cell Dev Biol 17: 463–516.

  • Stetler-Stevenson WG . (1990). Cancer Metast Rev 9: 289–303.

  • Stevens TA, Iacovoni JS, Edelman DB, Meech R . (2004). J Bio Chem 279: 14520–14530.

  • Vu TH, Shipley JM, Bergers G, Berger JE, Helms JA, Hanahan D et al. (1998). Cell 93: 411–422.

  • Yoshiji H, Gomez DE, Thorgeirsson UP . (1996). Int J Cancer 69: 131–134.

  • Zhao YG, Xiao AZ, Park HI, Newcomer RG, Yan M, Man YG et al. (2004). Cancer Res 64: 590–598.

  • Zugmaier G, Knabbe C, Fritsch C, Simpson S, Ennis B, Lippman M et al. (1991). J Steroid Biochem Mol Biol 39: 681–685.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R Meech.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stevens, T., Meech, R. BARX2 and estrogen receptor-α (ESR1) coordinately regulate the production of alternatively spliced ESR1 isoforms and control breast cancer cell growth and invasion. Oncogene 25, 5426–5435 (2006). https://doi.org/10.1038/sj.onc.1209529

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1209529

Keywords

This article is cited by

Search

Quick links