Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Histone modifications silence the GATA transcription factor genes in ovarian cancer

Abstract

Altered expression of GATA factors was found and proposed as the underlying mechanism for dedifferentiation in ovarian carcinogenesis. In particular, GATA6 is lost or excluded from the nucleus in 85% of ovarian tumors and GATA4 expression is absent in majority of ovarian cancer cell lines. Here, we evaluated their DNA and histone epigenetic modifications in five ovarian epithelial and carcinoma cell lines (human ‘immortalized’ ovarian surface epithelium (HIO)-117, HIO-114, A2780, SKOV3 and ES2). GATA4 and GATA6 gene silencing was found to correlate with hypoacetylation of histones H3 and H4 and loss of histone H3/lysine K4 tri-methylation at their promoters in all lines. Conversely, histone H3/lysine K9 di-methylation and HP1γ association were not observed, excluding reorganization of GATA genes into heterochromatic structures. The histone deacetylase inhibitor trichostatin A, but not the DNA methylation inhibitor 5′-aza-2′-deoxycytidine, re-established the expression of GATA4 and/or GATA6 in A2780 and HIO-114 cells, correlating with increased histone H3 and H4 acetylation, histone H3 lysine K4 methylation and DNase I sensitivity at the promoters. Therefore, altered histone modification of the promoter loci is one mechanism responsible for the silencing of GATA transcription factors and the subsequent loss of a target gene, the tumor suppressor Disabled-2, in ovarian carcinogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  • Akiyama Y, Watkins N, Suzuki H, Jair KW, van Engeland M, Esteller M et al. (2003). Mol Cell Biol 23: 8429–8439.

  • Bachman KE, Park BH, Rhee I, Rajagopalan H, Herman JG, Baylin SB et al. (2003). Cancer Cell 3: 89–95.

  • Bai Y, Akiyama Y, Nagasaki H, Yagi OK, Kikuchi Y, Saito N et al. (2000). Mol Carcinog 28: 184–188.

  • Baylin S, Bestor TH . (2002). Cancer Cell 1: 299–305.

  • Berger SL . (2002). Curr Opin Genet Dev 12: 142–148.

  • Berk AJ, Sharp PA . (1977). Cell 12: 721–732.

  • Bova GS, Carter BS, Bussemakers MJ, Emi M, Fujiwara Y, Kyprianou N et al. (1993). Cancer Res 53: 3869–3873.

  • Capo-chichi CD, Roland IH, Vanderveer L, Bao R, Yamagata T, Hirai H et al. (2003). Cancer Res 63: 4967–4977.

  • Egger G, Liang G, Aparicio A, Jones PA . (2004). Nature 429: 457–463.

  • Fazili Z, Sun W, Mittelstaedt S, Cohen C, Xu XX . (1999). Oncogene 18: 3104–3113.

  • Fraga MF, Ballestar E, Villar-Garea A, Boix-Chornet M, Espada J, Schotta G et al. (2005). Nat Genet 37: 391–400.

  • Frommer M, McDonald LE, Millar DS, Collis CM, Watt F, Grigg GW et al. (1992). Proc Natl Acad Sci USA 89: 1827–1831.

  • Fujiwara Y, Emi M, Ohata H, Kato Y, Nakajima T, Mori T et al. (1993). Cancer Res 53: 1172–1174.

  • Gong QH, McDowell JC, Dean A . (1996). Mol Cell Biol 16: 6055–6064.

  • Gregory P, Wagner DK, Horz W . (2001). Exp Cell Res 265: 195–202.

  • Guo M, Akiyama Y, House MG, Hooker CM, Heath E, Gabrielson E et al. (2004). Clin Cancer Res 10: 7917–7924.

  • Hake SB, Xiao A, Allis CD . (2004). Br J Cancer 90: 761–769.

  • Herman JG, Baylin SB . (2003). N Engl J Med 349: 2042–2054.

  • Herman JG, Graff JR, Myohanen S, Nelkin BD, Baylin SB . (1996). Proc Natl Acad Sci USA 93: 9821–9826.

  • Ho CL, Kurman RJ, Dehari R, Wang TL, Shih Ie M . (2004). Cancer Res 64: 6915–6918.

  • Jackson PD, Felsenfeld G . (1985). Proc Natl Acad Sci USA 82: 2296–2300.

  • Jenuwein T, Allis CD . (2001). Science 293: 1074–1080.

  • Jones PA, Laird PW . (1999). Nat Genet 21: 163–167.

  • Lachner M, O'Carroll D, Rea S, Mechtler K, Jenuwein T . (2001). Nature 410: 116–120.

  • Lassus H, Laitinen MP, Anttonen M, Heikinheimo M, Aaltonen LA, Ritvos O et al. (2001). Lab Invest 81: 517–526.

  • Li LC, Dahiya R . (2002). Bioinformatics 18: 1427–1431.

  • Mok SC, Chan WY, Wong KK, Cheung KK, Lau CC, Ng SW et al. (1998). Oncogene 16: 2381–2387.

  • Molkentin JD . (2000). J Biol Chem 275: 38949–38952.

  • Morrisey EE, Musco S, Chen MY, Lu MM, Leiden JM, Parmacek MS . (2000). J Biol Chem 275: 19949–19954.

  • Mutskov V, Felsenfeld G . (2004). EMBO J 23: 138–149.

  • Nemer G, Qureshi ST, Malo D, Nemer M . (1999). Mamm Genome 10: 993–999.

  • Park IK, Morrison SJ, Clarke MF . (2004). J Clin Invest 113: 175–179.

  • Rice JC, Allis CD . (2001). Curr Opin Cell Biol 13: 263–273.

  • Santos-Rosa H, Schneider R, Bannister AJ, Sherriff J, Bernstein BE, Emre NC et al. (2002). Nature 419: 407–411.

  • Schneider R, Bannister AJ, Myers FA, Thorne AW, Crane-Robinson C, Kouzarides T . (2004). Nat Cell Biol 6: 73–77.

  • Sheng Z, Sun W, Smith E, Cohen C, Xu XX . (2000). Oncogene 19: 4847–4854.

  • Spencer VA, Sun JM, Li L, Davie JR . (2003). Methods 31: 67–75.

  • Umlauf D, Goto Y, Feil R . (2004). Methods Mol Biol 287: 99–120.

  • Valk-Lingbeek ME, Bruggeman SW, van Lohuizen M . (2004). Stem Cells Cancer Polycomb Connect Cell 118: 409–418.

  • Wakana K, Akiyama Y, Aso T, Yuasa Y . (2005). Cancer Lett (Epub ahead of print).

  • Yang DH, Smith ER, Cohen C, Wu H, Patriotis C, Godwin AK et al. (2002a). Cancer 94: 2380–2392.

  • Yang DH, Smith ER, Roland IH, Sheng Z, He J, Martin WD et al. (2002b). Dev Biol 251: 27–44.

  • Zheng J, Benedict WF, Xu HJ, Hu SX, Kim TM, Velicescu M et al. (1995). J Natl Cancer Inst 87: 1146–1153.

  • Zheng J, Wan M, Zweizig S, Velicescu M, Yu MC, Dubeau L . (1993). Cancer Res 53: 4138–4142.

Download references

Acknowledgements

We appreciate Dr Elizabeth Smith for reading and commenting during the process of preparing the paper. We acknowledge the assistance by the Histopathology Facility, the DNA Sequencing Facility, the Fannie E Rippel Biochemistry and Biotechnology Facility, and the Cell Culture Facility of Fox Chase Cancer Center. Drs Kathy Qi Cai, Paul Cairns and Andrew Godwin are greatly appreciated for their intellectual and technical advice in performing these experiments. We thank Malgorzata Rula, Lisa Vanderveer and Jennifer Smedberg for their technical assistance, and Ms Patricia Bateman for her excellent secretarial support. This work was supported by grants R01 CA79716 and R01 CA75389 to XX Xu from NCI, NIH, funds from Ovarian Cancer SPORE P50 CA83638 (RF Ozols, PI), and the Core Grant #CA006927. The work was also supported by an appropriation from the Commonwealth of Pennsylvania.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X-X Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caslini, C., Capo-chichi, C., Roland, I. et al. Histone modifications silence the GATA transcription factor genes in ovarian cancer. Oncogene 25, 5446–5461 (2006). https://doi.org/10.1038/sj.onc.1209533

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1209533

Keywords

This article is cited by

Search

Quick links