Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Oncogenomics
  • Published:

Identification of target genes in laryngeal squamous cell carcinoma by high-resolution copy number and gene expression microarray analyses

Abstract

Molecular mechanisms contributing to initiation and progression of head and neck squamous cell carcinoma are still poorly known. Numerous genetic alterations have been described, but molecular consequences of such alterations in most cases remain unclear. Here, we performed an integrated high-resolution microarray analysis of gene copy number and expression in 20 laryngeal cancer cell lines and primary tumors. Our aim was to identify genetic alterations that play a key role in disease pathogenesis and pinpoint genes whose expression is directly impacted by these events. Integration of DNA level data from array-based comparative genomic hybridization with RNA level information from oligonucleotide microarrays was achieved with custom-developed bioinformatic methods. High-level amplifications had a clear impact on gene expression. Across the genome, overexpression of 739 genes could be attributed to gene amplification events in cell lines, with 325 genes showing the same phenomenon in primary tumors including FADD and PPFIA1 at 11q13. The analysis of gene ontology and pathway distributions further pinpointed genes that may identify potential targets of therapeutic intervention. Our data highlight genes that may be critically important to laryngeal cancer progression and offer potential therapeutic targets.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Autio R, Hautaniemi S, Kauraniemi P, Yli-Harja O, Astola J, Wolf M et al. (2003). Bioinformatics 19: 1714–1715.

  • Baldwin C, Garnis C, Zhang L, Rosin MP, Lam WL . (2005). Cancer Res 65: 7561–7567.

  • Baselga J, Arteaga CL . (2005). J Clin Oncol 23: 2445–2459.

  • Baudis M, Cleary ML . (2001). Bioinformatics 17: 1228–1229.

  • Belbin TJ, Singh B, Barber I, Socci N, Wenig B, Smith R et al. (2002). Cancer Res 62: 1184–1190.

  • Choi P, Chen C . (2005). Cancer 104: 1113–1128.

  • Chung CH, Parker JS, Karaca G, Wu J, Funkhouser WK, Moore D et al. (2004). Cancer Cell 5: 489–500.

  • Cohen EE, Rosen F, Stadler WM, Recant W, Stenson K, Huo D et al. (2003). J Clin Oncol 21: 1980–1987.

  • Cromer A, Carles A, Millon R, Ganguli G, Chalmel F, Lemaire F et al. (2004). Oncogene 23: 2484–2498.

  • Dong Y, Sui L, Watanabe Y, Yamaguchi F, Hatano N, Tokuda M . (2005). Clin Cancer Res 11: 259–266.

  • Garcia MJ, Pole JC, Chin SF, Teschendorff A, Naderi A, Ozdag H et al. (2005). Oncogene 24: 5235–5245.

  • Gene Ontology Consortium (2000). Nat Genet 25: 25–29.

  • Ginos MA, Page GP, Michalowicz BS, Patel KJ, Volker SE, Pambuccian SE et al. (2004). Cancer Res 64: 55–63.

  • Gollin SM . (2001). Head Neck 23: 238–253.

  • Grénman R, Pekkola-Heino K, Joensuu H, Aitasalo K, Klemi P, Lakkala T . (1992). Arch Otolaryngol Head Neck Surg 118: 542–547.

  • Hautaniemi S, Ringnér M, Kauraniemi P, Autio R, Edgren H, Yli-Harja O et al. (2004). J Franklin Inst 341: 77–88.

  • Heidenblad M, Lindgren D, Veltman JA, Jonson T, Mahlamaki EH, Gorunova L et al. (2005). Oncogene 24: 1794–1801.

  • Hopkins AL, Groom CR . (2002). Nat Rev Drug Discov 1: 727–730.

  • Hyman E, Kauraniemi P, Hautaniemi S, Wolf M, Mousses S, Rozenblum E et al. (2002). Cancer Res 62: 6240–6245.

  • Imoto I, Yang ZQ, Pimkhaokham A, Tsuda H, Shimada Y, Imamura M et al. (2001). Cancer Res 61: 6629–6634.

  • Jemal A, Murray T, Ward E, Samuels A, Tiwari RC, Ghafoor A et al. (2005). CA Cancer J Clin 55: 10–30.

  • Joslyn CA, Mniszewski SM, Fulmer A, Heaton G . (2004). Bioinformatics 20 (Suppl 1): i169–i177.

  • Lansford CD, Grenman R, Bier H, Somers KD, Kim SY, Whiteside TL et al. (1999). In: Masters J and Palsson B (eds). Head and Neck Cancers. Human Cell Culture, vol. 2, Cancer Cell Lines Part 2. Kluwer Academic Press: Dordrecht (Holland). pp 185–255.

    Google Scholar 

  • Lin M, Smith LT, Smiraglia DJ, Kazhiyur-Mannar R, Lang JC, Schuller DE et al. (2006). Oncogene 25: 1424–1433.

  • Mao EJ, Schwartz SM, Daling JR, Beckmann AM . (1998). J Oral Pathol Med 27: 297–302.

  • Mao L, Hong WK, Papadimitrakopoulou VA . (2004). Cancer Cell 5: 311–316.

  • Miller CT, Aggarwal S, Lin TK, Dagenais SL, Contreras JI, Orringer MB et al. (2003). Cancer Res 63: 4136–4143.

  • Monni O, Bärlund M, Mousses S, Kononen J, Sauter G, Heiskanen M et al. (2001). Proc Natl Acad Sci USA 98: 5711–5716.

  • Nawata S, Nakamura K, Hirakawa H, Sueoka K, Emoto T, Murakami A et al. (2003). Electrophoresis 24: 2277–2282.

  • Newton K, Harris AW, Strasser A . (2000). EMBO J 19: 931–941.

  • Pollack JR, Perou CM, Alizadeh AA, Eisen MB, Pergamenschikov A, Williams CF et al. (1999). Nat Genet 23: 41–46.

  • Pollack JR, Sorlie T, Perou CM, Rees CA, Jeffrey SS, Lonning PE et al. (2002). Proc Natl Acad Sci USA 99: 12963–12968.

  • Redon R, Hussenet T, Bour G, Caulee K, Jost B, Muller D et al. (2002). Cancer Res 62: 6211–6217.

  • Reed AL, Califano J, Cairns P, Westra WH, Jones RM, Koch W et al. (1996). Cancer Res 56: 3630–3633.

  • Serra-Pagès C, Kedersha NL, Fazikas L, Medley Q, Debant A, Streuli M . (1995). EMBO J 14: 2827–2838.

  • Sinclair CS, Rowley M, Naderi A, Couch FJ . (2003). Breast Cancer Res Treat 78: 313–322.

  • Soulieres D, Senzer NN, Vokes EE, Hidalgo M, Agarwala SS, Siu LL . (2004). J Clin Oncol 22: 77–85.

  • Strojan P, Oblak I, Svetic B, Smid L, Kos J . (2004). Br J Cancer 90: 1961–1968.

  • Strome SE, Dong H, Tamura H, Voss SG, Flies DB, Tamada K et al. (2003). Cancer Res 63: 6501–6505.

  • Wolf M, Mousses S, Hautaniemi S, Karhu R, Huusko P, Allinen M et al. (2004). Neoplasia 6: 240–247.

Download references

Acknowledgements

We thank Tuula Airaksinen and Marita Potila for excellent technical assistance, Mari Hero for help with clinical samples, Henrik Edgren for helpful discussions and comments especially with GO issues, Sami Kilpinen for advice with MATLAB, and Sampsa Hautaniemi for critical reading of the manuscript. This work was supported in part by Helsinki Biomedical Graduate School, Sigrid Juselius Foundation, Biocentrum Helsinki, Helsinki University Research Funds and Helsinki University Central Hospital Research Funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O Monni.

Additional information

Supplementary Information accompanies the paper on Oncogene website (http://www.nature.com/onc).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Järvinen, AK., Autio, R., Haapa-Paananen, S. et al. Identification of target genes in laryngeal squamous cell carcinoma by high-resolution copy number and gene expression microarray analyses. Oncogene 25, 6997–7008 (2006). https://doi.org/10.1038/sj.onc.1209690

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1209690

Keywords

This article is cited by

Search

Quick links