Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

A small piece in the cancer puzzle: microRNAs as tumor suppressors and oncogenes

Abstract

The known classes of genes that function as tumor suppressors and oncogenes have recently been expanded to include the microRNA (miRNA) family of regulatory molecules. miRNAs negatively regulate the stability and translation of target messenger RNAs (mRNA) and have been implicated in diverse processes such as cellular differentiation, cell-cycle control and apoptosis. Examination of tumor-specific miRNA expression profiles has revealed widespread dysregulation of these molecules in diverse cancers. Although studies addressing their role in cancer pathogenesis are at an early stage, it is apparent that loss- or gain-of-function of specific miRNAs contributes to cellular transformation and tumorigenesis. The available evidence clearly demonstrates that these molecules are intertwined with cellular pathways regulated by classical oncogenes and tumor suppressors such as MYC, RAS and p53. Incorporation of miRNA regulation into current models of molecular cancer pathogenesis will be essential to achieve a complete understanding of this group of diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  • Alexandrow MG, Moses HL . (1997). Kips off to Myc: implications for TGF beta signaling. J Cell Biochem 66: 427–432.

    Article  CAS  PubMed  Google Scholar 

  • Ambros V . (2004). The functions of animal microRNAs. Nature 431: 350–355.

    Article  CAS  PubMed  Google Scholar 

  • Bagga S, Bracht J, Hunter S, Massirer K, Holtz J, Eachus R et al. (2005). Regulation by let-7 and lin-4 miRNAs results in target mRNA degradation. Cell 122: 553–563.

    Article  CAS  PubMed  Google Scholar 

  • Bartel DP . (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116: 281–297.

    Article  CAS  PubMed  Google Scholar 

  • Bentwich I, Avniel A, Karov Y, Aharonov R, Gilad S, Barad O et al. (2005). Identification of hundreds of conserved and nonconserved human microRNAs. Nat Genet 37: 766–770.

    Article  CAS  PubMed  Google Scholar 

  • Berezikov E, Guryev V, van de Belt J, Wienholds E, Plasterk RH, Cuppen E . (2005). Phylogenetic shadowing and computational identification of human microRNA genes. Cell 120: 21–24.

    Article  CAS  PubMed  Google Scholar 

  • Bracken AP, Ciro M, Cocito A, Helin K . (2004). E2F target genes: unraveling the biology. Trends Biochem Sci 29: 409–417.

    Article  CAS  PubMed  Google Scholar 

  • Brennecke J, Hipfner DR, Stark A, Russell RB, Cohen SM . (2003). bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell 113: 25–36.

    Article  CAS  PubMed  Google Scholar 

  • Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E et al. (2002). Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA 99: 15524–15529.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Calin GA, Ferracin M, Cimmino A, Di Leva G, Shimizu M, Wojcik SE et al. (2005). A MicroRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N Engl J Med 353: 1793–1801.

    Article  CAS  PubMed  Google Scholar 

  • Calin GA, Liu CG, Sevignani C, Ferracin M, Felli N, Dumitru CD et al. (2004a). MicroRNA profiling reveals distinct signatures in B cell chronic lymphocytic leukemias. Proc Natl Acad Sci USA 101: 11755–11760.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E, Yendamuri S et al. (2004b). Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci USA 101: 2999–3004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chan JA, Krichevsky AM, Kosik KS . (2005). MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res 65: 6029–6033.

    Article  CAS  PubMed  Google Scholar 

  • Chen CY, Shyu AB . (1995). AU-rich elements: characterization and importance in mRNA degradation. Trends Biochem Sci 20: 465–470.

    Article  CAS  PubMed  Google Scholar 

  • Cimmino A, Calin GA, Fabbri M, Iorio MV, Ferracin M, Shimizu M et al. (2005). miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci USA 102: 13944–13949.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cole MD, McMahon SB . (1999). The Myc oncoprotein: a critical evaluation of transactivation and target gene regulation. Oncogene 18: 2916–2924.

    Article  CAS  PubMed  Google Scholar 

  • Costinean S, Zanesi N, Pekarsky Y, Tili E, Volinia S, Heerema N et al. (2006). Pre-B cell proliferation and lymphoblastic leukemia/high-grade lymphoma in E{micro}-miR. Proc Natl Acad Sci USA 103: 7024–7029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dang CV . (1999). c-Myc target genes involved in cell growth, apoptosis, and metabolism. Mol Cell Biol 19: 1–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dohner H, Stilgenbauer S, Benner A, Leupolt E, Krober A, Bullinger L et al. (2000). Genomic aberrations and survival in chronic lymphocytic leukemia. N Engl J Med 343: 1910–1916.

    Article  CAS  PubMed  Google Scholar 

  • Dong JT, Boyd JC, Frierson Jr HF . (2001). Loss of heterozygosity at 13q14 and 13q21 in high grade, high stage prostate cancer. Prostate 49: 166–171.

    Article  CAS  PubMed  Google Scholar 

  • Du T, Zamore PD . (2005). microPrimer: the biogenesis and function of microRNA. Development 132: 4645–4652.

    Article  CAS  PubMed  Google Scholar 

  • Eiriksdottir G, Johannesdottir G, Ingvarsson S, Bjornsdottir IB, Jonasson JG, Agnarsson BA et al. (1998). Mapping loss of heterozygosity at chromosome 13q: loss at 13q12-q13 is associated with breast tumour progression and poor prognosis. Eur J Cancer 34: 2076–2081.

    Article  CAS  PubMed  Google Scholar 

  • Eis PS, Tam W, Sun L, Chadburn A, Li Z, Gomez MF et al. (2005). Accumulation of miR-155 and BIC RNA in human B cell lymphomas. Proc Natl Acad Sci USA 102: 3627–3632.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • el-Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM et al. (1993). WAF1, a potential mediator of p53 tumor suppression. Cell 75: 817–825.

    Article  CAS  PubMed  Google Scholar 

  • Fernandez PC, Frank SR, Wang L, Schroeder M, Liu S, Greene J et al. (2003). Genomic targets of the human c-Myc protein. Genes Dev 17: 1115–1129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Griffiths-Jones S, Grocock RJ, van Dongen S, Bateman A, Enright AJ . (2006). miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res 34: D140–D144.

    Article  CAS  PubMed  Google Scholar 

  • Hatfield SD, Shcherbata HR, Fischer KA, Nakahara K, Carthew RW, Ruohola-Baker H . (2005). Stem cell division is regulated by the microRNA pathway. Nature 435: 974–978.

    Article  CAS  PubMed  Google Scholar 

  • Hayashita Y, Osada H, Tatematsu Y, Yamada H, Yanagisawa K, Tomida S et al. (2005). A polycistronic microRNA cluster, miR-17–92, is overexpressed in human lung cancers and enhances cell proliferation. Cancer Res 65: 9628–9632.

    Article  CAS  PubMed  Google Scholar 

  • He H, Jazdzewski K, Li W, Liyanarachchi S, Nagy R, Volinia S et al. (2005a). The role of microRNA genes in papillary thyroid carcinoma. Proc Natl Acad Sci USA 102: 19075–19080.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He L, Thomson JM, Hemann MT, Hernando-Monge E, Mu D, Goodson S et al. (2005b). A microRNA polycistron as a potential human oncogene. Nature 435: 828–833.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hemann MT, Fridman JS, Zilfou JT, Hernando E, Paddison PJ, Cordon-Cardo C et al. (2003). An epi-allelic series of p53 hypomorphs created by stable RNAi produces distinct tumor phenotypes in vivo. Nat Genet 33: 396–400.

    Article  CAS  PubMed  Google Scholar 

  • Hickman ES, Moroni MC, Helin K . (2002). The role of p53 and pRB in apoptosis and cancer. Curr Opin Genet Dev 12: 60–66.

    Article  CAS  PubMed  Google Scholar 

  • Honda S, Tanaka-Kosugi C, Yamada S, Sano T, Matsumoto T, Itakura M et al. (2003). Human pituitary adenomas infrequently contain inactivation of retinoblastoma 1 gene and activation of cyclin dependent kinase 4 gene. Endocr J 50: 309–318.

    Article  CAS  PubMed  Google Scholar 

  • Iorio MV, Ferracin M, Liu CG, Veronese A, Spizzo R, Sabbioni S et al. (2005). MicroRNA gene expression deregulation in human breast cancer. Cancer Res 65: 7065–7070.

    Article  CAS  PubMed  Google Scholar 

  • Jing Q, Huang S, Guth S, Zarubin T, Motoyama A, Chen J et al. (2005). Involvement of microRNA in AU-rich element-mediated mRNA instability. Cell 120: 623–634.

    Article  CAS  PubMed  Google Scholar 

  • John B, Enright AJ, Aravin A, Tuschl T, Sander C, Marks DS . (2004). Human MicroRNA targets. PLoS Biol 2: e363.

    Article  PubMed  PubMed Central  Google Scholar 

  • Johnson DG, Cress WD, Jakoi L, Nevins JR . (1994). Oncogenic capacity of the E2F1 gene. Proc Natl Acad Sci USA 91: 12823–12827.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson SM, Grosshans H, Shingara J, Byrom M, Jarvis R, Cheng A et al. (2005). RAS is regulated by the let-7 microRNA family. Cell 120: 635–647.

    Article  CAS  PubMed  Google Scholar 

  • Kim VN . (2005). MicroRNA biogenesis: coordinated cropping and dicing. Nat Rev Mol Cell Biol.

  • Koo SH, Ihm CH, Kwon KC, Lee JS, Park JW, Kim JW . (2003). Microsatellite alterations in hepatocellular carcinoma and intrahepatic cholangiocarcinoma. Cancer Genet Cytogenet 146: 139–144.

    Article  CAS  PubMed  Google Scholar 

  • Krutzfeldt J, Rajewsky N, Braich R, Rajeev KG, Tuschl T, Manoharan M et al. (2005). Silencing of microRNAs in vivo with ‘antagomirs’. Nature 438: 685–689.

    Article  PubMed  Google Scholar 

  • Lai EC . (2004). Predicting and validating microRNA targets. Genome Biol 5: 115.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee RC, Feinbaum RL, Ambros V . (1993). The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75: 843–854.

    Article  CAS  PubMed  Google Scholar 

  • Leone G, DeGregori J, Sears R, Jakoi L, Nevins JR . (1997). Myc and Ras collaborate in inducing accumulation of active cyclin E/Cdk2 and E2F. Nature 387: 422–426.

    Article  CAS  PubMed  Google Scholar 

  • Lewis BP, Burge CB, Bartel DP . (2005). Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120: 15–20.

    Article  CAS  PubMed  Google Scholar 

  • Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB . (2003). Prediction of mammalian microRNA targets. Cell 115: 787–798.

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Pei J, Xia H, Ke H, Wang H, Tao W . (2003). Lats2, a putative tumor suppressor, inhibits G1/S transition. Oncogene 22: 4398–4405.

    Article  CAS  PubMed  Google Scholar 

  • Lim LP, Lau NC, Garrett-Engele P, Grimson A, Schelter JM, Castle J et al. (2005). Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433: 769–773.

    Article  CAS  PubMed  Google Scholar 

  • Lin YW, Sheu JC, Liu LY, Chen CH, Lee HS, Huang GT et al. (1999). Loss of heterozygosity at chromosome 13q in hepatocellular carcinoma: identification of three independent regions. Eur J Cancer 35: 1730–1734.

    Article  CAS  PubMed  Google Scholar 

  • Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D et al. (2005). MicroRNA expression profiles classify human cancers. Nature 435: 834–838.

    Article  CAS  PubMed  Google Scholar 

  • Malumbres M, Barbacid M . (2003). RAS oncogenes: the first 30 years. Nat Rev Cancer 3: 459–465.

    Article  CAS  PubMed  Google Scholar 

  • Martin MM, Lee EJ, Buckenberger JA, Schmittgen TD, Elton TS . (2006). Microrna-155 regulates human angiotensin II type 1 receptor expression in fibroblasts. J Biol Chem.

  • Matsumura I, Tanaka H, Kanakura Y . (2003). E2F1 and c-Myc in cell growth and death. Cell Cycle 2: 333–338.

    Article  CAS  PubMed  Google Scholar 

  • Michael MZ, SM OC, van Holst Pellekaan NG, Young GP, James RJ . (2003). Reduced accumulation of specific microRNAs in colorectal neoplasia. Mol Cancer Res 1: 882–891.

    CAS  PubMed  Google Scholar 

  • O’Donnell KA, Wentzel EA, Zeller KI, Dang CV, Mendell JT . (2005). c-Myc-regulated microRNAs modulate E2F1 expression. Nature 435: 839–843.

    Article  PubMed  Google Scholar 

  • Ota A, Tagawa H, Karnan S, Tsuzuki S, Karpas A, Kira S et al. (2004). Identification and characterization of a novel gene, C13orf25, as a target for 13q31-q32 amplification in malignant lymphoma. Cancer Res 64: 3087–3095.

    Article  CAS  PubMed  Google Scholar 

  • Pajic A, Spitkovsky D, Christoph B, Kempkes B, Schuhmacher M, Staege MS et al. (2000). Cell cycle activation by c-myc in a Burkitt lymphoma model cell line. Int J Cancer 87: 787–793.

    Article  CAS  PubMed  Google Scholar 

  • Pasquinelli AE, Reinhart BJ, Slack F, Martindale MQ, Kuroda MI, Maller B et al. (2000). Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature 408: 86–89.

    Article  CAS  PubMed  Google Scholar 

  • Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE et al. (2000). The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403: 901–906.

    Article  CAS  PubMed  Google Scholar 

  • Richter J, Wagner U, Schraml P, Maurer R, Alund G, Knonagel H et al. (1999). Chromosomal imbalances are associated with a high risk of progression in early invasive (pT1) urinary bladder cancer. Cancer Res 59: 5687–5691.

    CAS  PubMed  Google Scholar 

  • Sanchez-Beato M, Sanchez-Aguilera A, Piris MA . (2003). Cell cycle deregulation in B-cell lymphomas. Blood 101: 1220–1235.

    Article  CAS  PubMed  Google Scholar 

  • Schiavone N, Rosini P, Quattrone A, Donnini M, Lapucci A, Citti L et al. (2000). A conserved AU-rich element in the 3′ untranslated region of bcl-2 mRNA is endowed with a destabilizing function that is involved in bcl-2 down-regulation during apoptosis. FASEB J 14: 174–184.

    Article  CAS  PubMed  Google Scholar 

  • Serrano M, Lin AW, McCurrach ME, Beach D, Lowe SW . (1997). Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88: 593–602.

    Article  CAS  PubMed  Google Scholar 

  • Soutschek J, Akinc A, Bramlage B, Charisse K, Constien R, Donoghue M et al. (2004). Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature 432: 173–178.

    Article  CAS  PubMed  Google Scholar 

  • Sulis ML, Parsons R . (2003). PTEN: from pathology to biology. Trends Cell Biol 13: 478–483.

    Article  CAS  PubMed  Google Scholar 

  • Takamizawa J, Konishi H, Yanagisawa K, Tomida S, Osada H, Endoh H et al. (2004). Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res 64: 3753–3756.

    Article  CAS  PubMed  Google Scholar 

  • Tam W, Ben-Yehuda D, Hayward WS . (1997). bic, a novel gene activated by proviral insertions in avian leukosis virus-induced lymphomas, is likely to function through its noncoding RNA. Mol Cell Biol 17: 1490–1502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tam W, Hughes SH, Hayward WS, Besmer P . (2002). Avian bic, a gene isolated from a common retroviral site in avian leukosis virus-induced lymphomas that encodes a noncoding RNA, cooperates with c-myc in lymphomagenesis and erythroleukemogenesis. J Virol 76: 4275–4286.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ten Dijke P, Goumans MJ, Itoh F, Itoh S . (2002). Regulation of cell proliferation by Smad proteins. J Cell Physiol 191: 1–16.

    Article  CAS  PubMed  Google Scholar 

  • Tsang YS, Lo KW, Leung SF, Choi PH, Fong Y, Lee JC et al. (1999). Two distinct regions of deletion on chromosome 13q in primary nasopharyngeal carcinoma. Int J Cancer 83: 305–308.

    Article  CAS  PubMed  Google Scholar 

  • Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F et al. (2006). A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA 103: 2257–2261.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Voorhoeve PM, le Sage C, Schrier M, Gillis AJ, Stoop H, Nagel R et al. (2006). A genetic screen implicates miRNA-372 and miRNA-373 as oncogenes in testicular germ cell tumors. Cell 124: 1169–1181.

    Article  CAS  PubMed  Google Scholar 

  • Weinberg RA . (1996). E2F and cell proliferation: a world turned upside down. Cell 85: 457–459.

    Article  CAS  PubMed  Google Scholar 

  • Wightman B, Ha I, Ruvkun G . (1993). Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75: 855–862.

    Article  CAS  PubMed  Google Scholar 

  • Xie X, Lu J, Kulbokas EJ, Golub TR, Mootha V, Lindblad-Toh K et al. (2005). Systematic discovery of regulatory motifs in human promoters and 3′ UTRs by comparison of several mammals. Nature 434: 338–345.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu P, Vernooy SY, Guo M, Hay BA . (2003). The Drosophila microRNA miR-14 suppresses cell death and is required for normal fat metabolism. Curr Biol 13: 790–795.

    Article  CAS  PubMed  Google Scholar 

  • Yamasaki L, Jacks T, Bronson R, Goillot E, Harlow E, Dyson NJ . (1996). Tumor induction and tissue atrophy in mice lacking E2F-1. Cell 85: 537–548.

    Article  CAS  PubMed  Google Scholar 

  • Yanaihara N, Caplen N, Bowman E, Seike M, Kumamoto K, Yi M et al. (2006). Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell 9: 189–198.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Emily Gesner from the University of Alberta for helpful discussions in the early stages of writing. JTM is a March of Dimes Basil O’Connor Scholar, a Rita Allen Foundation Scholar, and also receives support from the Lustgarten Foundation for Pancreatic Cancer Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J T Mendell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kent, O., Mendell, J. A small piece in the cancer puzzle: microRNAs as tumor suppressors and oncogenes. Oncogene 25, 6188–6196 (2006). https://doi.org/10.1038/sj.onc.1209913

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1209913

Keywords

This article is cited by

Search

Quick links