Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Apoptosis induced by proteasome inhibition in cancer cells: predominant role of the p53/PUMA pathway

Abstract

The proteasome has emerged as a novel target for antineoplastic treatment of hematological malignancies and solid tumors, including those of the central nervous system. To identify cell death pathways activated in response to inhibition of the proteasome system in cancer cells, we treated human SH-SY5Y neuroblastoma cells with the selective proteasome inhibitor (PI) epoxomicin (Epoxo). Prolonged exposure to Epoxo was associated with increased levels of poly-ubiquitinylated proteins and p53, release of cytochrome c from the mitochondria, and activation of caspases. Analysis of global gene expression using high-density oligonucleotide microarrays revealed that Epoxo triggered transcriptional activation of the two Bcl-2-homology domain-3-only (BH3-only) genes p53 upregulated modulator of apoptosis (PUMA) and Bim. Subsequent studies in PUMA- and Bim-deficient cells indicated that Epoxo-induced caspase activation and apoptosis was predominantly PUMA-dependent. Further characterization of the transcriptional response to Epoxo in HCT116 human colon cancer cells demonstrated that PUMA induction was p53-dependent; with deficiency in either p53 or PUMA significantly protected HCT116 cells against Epoxo-induced apoptosis. Our data suggest that p53 activation and the transcriptional induction of its target gene PUMA play an important role in the sensitivity of cancer cells to apoptosis induced by proteasome inhibition, and imply that antineoplastic therapies with PIs might be especially useful in cancers with functional p53.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

Abbreviations

PUMA:

p53 upregulated modulator of apoptosis

GRP78 :

immunoglobulin heavy chain-binding protein/78 kDa glucose-regulated protein

DMSO:

dimethylsulfoxide

CHOP :

C/EBP-homologous protein

Epoxo:

epoxomicin

WT:

wild type

References

  • Adams J . (2002). Proteasome inhibitors as new anticancer drugs. Curr Opin Oncol 14: 628–634.

    Article  CAS  PubMed  Google Scholar 

  • Adams J . (2004a). The proteasome: a suitable antineoplastic target. Nat Rev Cancer 4: 349.

    Article  CAS  PubMed  Google Scholar 

  • Adams J . (2004b). The proteasome: a suitable antineoplastic target. Nat Rev Cancer 4: 349–360.

    Article  CAS  PubMed  Google Scholar 

  • Aghajanian C, Soignet S, Dizon DS, Pien CS, Adams J, Elliott PJ et al. (2002). A phase I trial of the novel proteasome inhibitor PS341 in advanced solid tumor malignancies. Clin Cancer Res 8: 2505–2511.

    CAS  PubMed  Google Scholar 

  • Amiri KI, Horton LW, LaFleur BJ, Sosman JA, Richmond A . (2004). Augmenting chemosensitivity of malignant melanoma tumors via proteasome inhibition: implication for bortezomib (VELCADE, PS-341) as a therapeutic agent for malignant melanoma. Cancer Res 64: 4912–4918.

    Article  CAS  PubMed  Google Scholar 

  • Anan A, Baskin-Bey ES, Bronk SF, Werneburg NW, Shah VH, Gores GJ . (2006). Proteasome inhibition induces hepatic stellate cell apoptosis. Hepatology 43: 335–344.

    Article  CAS  PubMed  Google Scholar 

  • Biswas SC, Ryu E, Park C, Malagelada C, Greene LA . (2005). Puma and p53 play required roles in death evoked in a cellular model of Parkinson disease. Neurochem Res 30: 839–845.

    Article  CAS  PubMed  Google Scholar 

  • Bouillet P, Metcalf D, Huang DC, Tarlinton DM, Kay TW, Kontgen F et al. (1999). Proapoptotic Bcl-2 relative Bim required for certain apoptotic responses, leukocyte homeostasis, and to preclude autoimmunity. Science 286: 1735–1738.

    Article  CAS  PubMed  Google Scholar 

  • Breitschopf K, Zeiher AM, Dimmeler S . (2000). Ubiquitin-mediated degradation of the proapoptotic active form of bid. A functional consequence on apoptosis induction. J Biol Chem 275: 21648–21652.

    Article  CAS  PubMed  Google Scholar 

  • Ceballos E, Munoz-Alonso MJ, Berwanger B, Acosta JC, Hernandez R, Krause M et al. (2005). Inhibitory effect of c-Myc on p53-induced apoptosis in leukemia cells. Microarray analysis reveals defective induction of p53 target genes and upregulation of chaperone genes. Oncogene 24: 4559–4571.

    Article  CAS  PubMed  Google Scholar 

  • Chauhan D, Hideshima T, Anderson KC . (2005). Proteasome inhibition in multiple myeloma: therapeutic implication. Annu Rev Pharmacol Toxicol 45: 465–476.

    Article  CAS  PubMed  Google Scholar 

  • Chowdary DR, Dermody JJ, Jha KK, Ozer HL . (1994). Accumulation of p53 in a mutant cell line defective in the ubiquitin pathway. Mol Cell Biol 14: 1997–2003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dang CV . (1999). c-Myc target genes involved in cell growth, apoptosis, and metabolism. Mol Cell Biol 19: 1–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ganten TM, Koschny R, Haas TL, Sykora J, Li-Weber M, Herzer K et al. (2005). Proteasome inhibition sensitizes hepatocellular carcinoma cells, but not human hepatocytes, to TRAIL. Hepatology 42: 588–597.

    Article  CAS  PubMed  Google Scholar 

  • Han J-w, Flemington C, Houghton AB, Gu Z, Zambetti GP, Lutz RJ et al. (2001). Expression of bbc3, a pro-apoptotic BH3-only gene, is regulated by diverse cell death and survival signals. Proc Natl Acad Sci USA 98: 11318–11323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanada M, Sugawara K, Kaneta K, Toda S, Nishiyama Y, Tomita K et al. (1992). Epoxomicin, a new antitumor agent of microbial origin. J Antibiotics, 1746–1752.

  • Hideshima T, Chauhan D, Richardson P, Mitsiades C, Mitsiades N, Hayashi T et al. (2002). NF-kappa B as a therapeutic target in multiple myeloma. J Biol Chem 277: 16639–16647.

    Article  CAS  PubMed  Google Scholar 

  • Huang H-k, Joazeiro CAP, Bonfoco E, Kamada S, Leverson JD, Hunter T . (2000). The inhibitor of apoptosis, cIAP2, functions as a ubiquitin-protein ligase and promotes in vitro monoubiquitination of caspases 3 and 7. J Biol Chem 275: 26661–26664.

    CAS  PubMed  Google Scholar 

  • Karin M . (2006). Nuclear factor-[kappa]B in cancer development and progression. Nature 441: 431.

    Article  CAS  PubMed  Google Scholar 

  • Karin M, Ben-Neriah Y . (2000). Phosphorylation meets ubiquitination: the control of NF-[kappa]B activity. Annu Rev Immunol 18: 621–663.

    Article  CAS  PubMed  Google Scholar 

  • Kikuchi S, Shinpo K, Tsuji S, Takeuchi M, Yamagishi S, Makita Z et al. (2003). Effect of proteasome inhibitor on cultured mesencephalic dopaminergic neurons. Brain Res 964: 228.

    Article  CAS  PubMed  Google Scholar 

  • Kurland JF, Meyn RE . (2001). Protease inhibitors restore radiation-induced apoptosis to Bcl-2-expressing lymphoma cells. Int J Cancer 96: 327–333.

    Article  CAS  PubMed  Google Scholar 

  • Kuwana T, Bouchier-Hayes L, Chipuk JE, Bonzon C, Sullivan BA, Green DR et al. (2005). BH3 domains of BH3-only proteins differentially regulate Bax-mediated mitochondrial membrane permeabilization both directly and indirectly. Mol Cell 17: 525–535.

    Article  CAS  PubMed  Google Scholar 

  • Leverkus M, Sprick MR, Wachter T, Mengling T, Baumann B, Serfling E et al. (2003). Proteasome inhibition results in TRAIL sensitization of primary keratinocytes by removing the resistance-mediating block of effector caspase maturation. Mol Cell Biol 23: 777–790.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ley R, Balmanno K, Hadfield K, Weston C, Cook SJ . (2003). Activation of the ERK1/2 signaling pathway promotes phosphorylation and proteasome-dependent degradation of the BH3-only protein, Bim. J Biol Chem 278: 18811–18816.

    Article  CAS  PubMed  Google Scholar 

  • Luo JL, Kamata H, Karin M . (2005). IKK/NF-kappaB signaling: balancing life and death – a new approach to cancer therapy. J Clin Invest 115: 2625–2632.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marshansky V, Wang X, Bertrand R, Luo H, Duguid W, Chinnadurai G et al. (2001). Proteasomes modulate balance among proapoptotic and antiapoptotic Bcl-2 family members and compromise functioning of the electron transport chain in leukemic cells. J Immunol 166: 3130–3142.

    Article  CAS  PubMed  Google Scholar 

  • Masdehors P, Merle-Beral H, Maloum K, Omura S, Magdelenat H, Delic J . (2000). Deregulation of the ubiquitin system and p53 proteolysis modify the apoptotic response in B-CLL lymphocytes. Blood 96: 269–274.

    CAS  PubMed  Google Scholar 

  • Meiners S, Heyken D, Weller A, Ludwig A, Stangl K, Kloetzel PM et al. (2003). Inhibition of proteasome activity induces concerted expression of proteasome genes and de novo formation of Mammalian proteasomes. J Biol Chem 278: 21517–21525.

    Article  CAS  PubMed  Google Scholar 

  • Melino G . (2005). Discovery of the ubiquitin proteasome system and its involvement in apoptosis. 12: 1155.

  • Meng L, Mohan R, Kwok BH, Elofsson M, Sin N, Crews CM . (1999). Epoxomicin, a potent and selective proteasome inhibitor, exhibits in vivo antiinflammatory activity. Proc Natl Acad Sci USA 96: 10403–10408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mitsiades N, Mitsiades CS, Poulaki V, Chauhan D, Fanourakis G, Gu X et al. (2002). Molecular sequelae of proteasome inhibition in human multiple myeloma cells. 99: 14374–14379.

  • Nakano K, Vousden KH . (2001). PUMA, a novel proapoptotic gene, is induced by p53. Mol Cell 7: 683–694.

    Article  CAS  PubMed  Google Scholar 

  • Nikrad M, Johnson T, Puthalalath H, Coultas L, Adams J, Kraft AS . (2005). The proteasome inhibitor bortezomib sensitizes cells to killing by death receptor ligand TRAIL via BH3-only proteins Bik and Bim. Mol Cancer Ther 4: 443–449.

    CAS  PubMed  Google Scholar 

  • Owen-Schaub LB, Zhang W, Cusack JC, Angelo LS, Santee SM, Fujiwara T et al. (1995). Wild-type human p53 and a temperature-sensitive mutant induce Fas/APO-1 expression. Mol Cell Biol 15: 3032–3040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palombella VJ, Rando OJ, Goldberg AL, Maniatis T . (1994). The ubiquitinproteasome pathway is required for processing the NF-[kappa]B1 precursor protein and the activation of NF-[kappa]B. Cell 78: 773.

    Article  CAS  PubMed  Google Scholar 

  • Papandreou CN, Daliani DD, Nix D, Yang H, Madden T, Wang X et al. (2004). Phase I trial of the proteasome inhibitor bortezomib in patients with advanced solid tumors with observations in androgen-independent prostate cancer. J Clin Oncol 22: 2108–2121.

    Article  CAS  PubMed  Google Scholar 

  • Park DJ, Lenz HJ . (2004). The role of proteasome inhibitors in solid tumors. Ann Med 36: 296–303.

    Article  CAS  PubMed  Google Scholar 

  • Qin JZ, Ziffra J, Stennett L, Bodner B, Bonish BK, Chaturvedi V et al. (2005). Proteasome inhibitors trigger NOXA-mediated apoptosis in melanoma and myeloma cells. Cancer Res 65: 6282–6293.

    Article  CAS  PubMed  Google Scholar 

  • Reimertz C, Kogel D, Lankiewicz S, Poppe M, Prehn JH . (2001). Ca(2+)-induced inhibition of apoptosis in human SH-SY5Y neuroblastoma cells: degradation of apoptotic protease activating factor-1 (APAF-1). J Neurochem 78: 1256–1266.

    Article  CAS  PubMed  Google Scholar 

  • Reimertz C, Kogel D, Rami A, Chittenden T, Prehn JH . (2003). Gene expression during ER stress-induced apoptosis in neurons: induction of the BH3-only protein Bbc3/PUMA and activation of the mitochondrial apoptosis pathway. J Cell Biol 162: 587–597.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richardson PG, Barlogie B, Berenson J, Singhal S, Jagannath S, Irwin D et al. (2003). A phase 2 study of bortezomib in relapsed, refractory myeloma. N Engl J Med 348: 2609–2617.

    Article  CAS  PubMed  Google Scholar 

  • Shinohara K, Tomioka M, Nakano H, Tone S, Ito H, Kawashima S . (1996). Apoptosis induction resulting from proteasome inhibition. Biochem J 317 (Part 2): 385–388.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki Y, Nakabayashi Y, Takahashi R . (2001). Ubiquitin-protein ligase activity of X-linked inhibitor of apoptosis protein promotes proteasomal degradation of caspase-3 and enhances its anti-apoptotic effect in Fas-induced cell death. Proc Natl Acad Sci USA 98: 8662–8667.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan T-T, Degenhardt K, Nelson DA, Beaudoin B, Nieves-Neira W, Bouillet P et al. (2005). Key roles of BIM-driven apoptosis in epithelial tumors and rational chemotherapy. Cancer Cell 7: 227.

    Article  CAS  PubMed  Google Scholar 

  • Villunger A, Michalak EM, Coultas L, Mullauer F, Bock G, Ausserlechner MJ et al. (2003a). p53- and drug-induced apoptotic responses mediated by BH3-only proteins Puma and Noxa. Science 302: 1036–1038.

    Article  CAS  PubMed  Google Scholar 

  • Villunger A, Scott C, Bouillet P, Strasser A . (2003b). Essential role for the BH3-only protein Bim but redundant roles for Bax, Bcl-2, and Bcl-w in the control of granulocyte survival. Blood 101: 2393–2400.

    Article  CAS  PubMed  Google Scholar 

  • Wagenknecht B, Hermisson M, Eitel K, Weller M . (1999). Proteasome inhibitors induce p53/p21-independent apoptosis in human glioma cells. Cell Physiol Biochem 9: 117–125.

    Article  CAS  PubMed  Google Scholar 

  • Wagenknecht B, Hermisson M, Groscurth P, Liston P, Krammer PH, Weller M . (2000). Proteasome inhibitor-induced apoptosis of glioma cells involves the processing of multiple caspases and cytochrome c release. J Neurochem 75: 2288–2297.

    Article  CAS  PubMed  Google Scholar 

  • Willis SN, Adams JM . (2005). Life in the balance: how BH3-only proteins induce apoptosis. Curr Opin Cell Biol 17: 617.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wong HK, Fricker M, Wyttenbach A, Villunger A, Michalak EM, Strasser A et al. (2005). Mutually exclusive subsets of BH3-only proteins are activated by the p53 and c-Jun N-terminal kinase/c-Jun signaling pathways during cortical neuron apoptosis induced by arsenite. Mol Cell Biol 25: 8732–8747.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu GS, Burns TF, McDonald III ER, Jiang W, Meng R, Krantz ID et al. (1997). KILLER/DR5 is a DNA damage-inducible p53-regulated death receptor gene. Nat Genet 17: 141–143.

    Article  CAS  PubMed  Google Scholar 

  • Yan C, Lu D, Hai T, Boyd DD . (2005). Activating transcription factor 3, a stress sensor, activates p53 by blocking its ubiquitination. EMBO J 24: 2425–2435.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin D, Zhou H, Kumagai T, Liu G, Ong JM, Black KL et al. (2005). Proteasome inhibitor PS-341 causes cell growth arrest and apoptosis in human glioblastoma multiforme (GBM). Oncogene 24: 344–354.

    Article  CAS  PubMed  Google Scholar 

  • Yu J, Wang Z, Kinzler KW, Vogelstein B, Zhang L . (2003). PUMA mediates the apoptotic response to p53 in colorectal cancer cells. Proc Natl Acad Sci USA 100: 1931–1936.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu J, Zhang L, Hwang PM, Kinzler KW, Vogelstein B . (2001). PUMA induces the rapid apoptosis of colorectal cancer cells. Mol Cell 7: 673–682.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Drs B Vogelstein, L Zhang, and J Yu for p53 and PUMA-deficient cells and Drs P Bouillet and J Adams for gifts of knockout mice. This study was supported by grants from the DFG (PR 338/9-3 and 9-4) to JHMP and DK and Science Foundation Ireland (03/RP/B344) to JHMP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J H M Prehn.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Concannon, C., Koehler, B., Reimertz, C. et al. Apoptosis induced by proteasome inhibition in cancer cells: predominant role of the p53/PUMA pathway. Oncogene 26, 1681–1692 (2007). https://doi.org/10.1038/sj.onc.1209974

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1209974

Keywords

Search

Quick links