Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Snail silencing effectively suppresses tumour growth and invasiveness

Abstract

The transcription factor Snail has been recently proposed as an important mediator of tumour invasion because of its role in downregulation of E-cadherin and induction of epithelial–mesenchymal transitions (EMT). This behaviour has led to the consideration of Snail as a potential therapeutic target to block tumour progression. In this report, we provide evidence for this hypothesis. We show that silencing of Snail by stable RNA interference in MDCK-Snail cells induces a complete mesenchymal to epithelial transition (MET), associated to the upregulation of E-cadherin, downregulation of mesenchymal markers and inhibition of invasion. More importantly, stable interference of endogenous Snail in two independent carcinoma cell lines leads to a dramatic reduction of in vivo tumour growth, accompanied by increased tumour differentiation and a significant decrease in the expression of MMP-9 and angiogenic markers and invasiveness. These results indicate that use of RNA interference can be an effective tool for blocking Snail function, opening the way for its application in new antiinvasive therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

Abbreviations

EMT:

epithelial–mesenchymal transition

LOXL2:

lysyl oxidase like-2

MET:

mesenchymal–epithelial transition

MDCK:

Madin Darby canine kidney

shRNA:

small hairpin interfering RNA

MMP:

metalloproteinase

RT–PCR:

reverse transcription-polymerase chain reaction

qRT–PCR:

quantitative real-time PCR

References

  • Batlle E, Sancho E, Franci C, Dominguez D, Monfar M, Baulida J et al. (2000). The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nat Cell Biol 2: 84–89.

    Article  CAS  PubMed  Google Scholar 

  • Behrens J, Frixen U, Schipper J, Weidner M, Birchmeier W . (1992). Cell adhesion in invasion and metastasis. Semin Cell Biol 3: 169–178.

    Article  CAS  PubMed  Google Scholar 

  • Birchmeier W, Behrens J . (1994). Cadherin expression in carcinomas: role in the formation of cell junctions and the prevention of invasiveness. Biochim Biophys Acta 1198: 11–26.

    CAS  PubMed  Google Scholar 

  • Blanco MJ, Moreno-Bueno G, Sarrio D, Locascio A, Cano A, Palacios J et al. (2002). Correlation of Snail expression with histological grade and lymph node status in breast carcinomas. Oncogene 21: 3241–3246.

    Article  CAS  PubMed  Google Scholar 

  • Bolos V, Peinado H, Perez-Moreno MA, Fraga MF, Esteller M, Cano A . (2003). The transcription factor Slug represses E-cadherin expression and induces epithelial to mesenchymal transitions: a comparison with Snail and E47 repressors. J Cell Sci 116: 499–511.

    Article  CAS  PubMed  Google Scholar 

  • Cano A, Perez-Moreno MA, Rodrigo I, Locascio A, Blanco MJ, del Barrio MG et al. (2000). The transcription factor snail controls epithelial–mesenchymal transitions by repressing E-cadherin expression. Nat Cell Biol 2: 76–83.

    Article  CAS  PubMed  Google Scholar 

  • Caplen NJ, Parrish S, Imani F, Fire A, Morgan RA . (2001). Specific inhibition of gene expression by small double-stranded RNAs in invertebrate and vertebrate systems. Proc Natl Acad Sci USA 98: 9742–9747.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Comijn J, Berx G, Vermassen P, Verschueren K, van Grunsven L, Bruyneel E et al. (2001). The two-handed E box binding zinc finger protein SIP1 downregulates E-cadherin and induces invasion. Mol Cell 7: 1267–1278.

    Article  CAS  PubMed  Google Scholar 

  • Christofori G, Semb H. . (1999). The role of the cell-adhesion molecule E-cadherin as a tumour-suppressor gene. Trends Biochem Sci 24: 73–76.

    Article  CAS  PubMed  Google Scholar 

  • Espineda CE, Chang JH, Twiss J, Rajasekaran SA, Rajasekaran AK . (2004). Repression of Na,K-ATPase beta1-subunit by the transcription factor snail in carcinoma. Mol Biol Cell 15: 1364–1373.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grooteclaes ML, Frisch SM. . (2000). Evidence for a function of CtBP in epithelial gene regulation and anoikis. Oncogene 19: 3823–3828.

    Article  CAS  PubMed  Google Scholar 

  • Guaita S, Puig I, Franci C, Garrido M, Dominguez D, Batlle E et al. (2002). Snail induction of epithelial to mesenchymal transition in tumour cells is accompanied by MUC1 repression and ZEB1 expression. J Biol Chem 277: 39209–39216.

    Article  CAS  PubMed  Google Scholar 

  • Hajra KM, Fearon ER . (2002). Cadherin and catenin alterations in human cancer. Genes Chromosomes Cancer 34: 255–268.

    Article  CAS  PubMed  Google Scholar 

  • Huber O, Bierkamp C, Kemler R . (1996). Cadherins and catenins in development. Curr Opin Cell Biol 8: 685–691.

    Article  CAS  PubMed  Google Scholar 

  • Ikenouchi J, Matsuda M, Furuse M, Tsukita S . (2003). Regulation of tight junctions during the epithelium-mesenchyme transition: direct repression of the gene expression of claudins/occludin by Snail. J Cell Sci 116: 1959–1967.

    Article  CAS  PubMed  Google Scholar 

  • Jorda M, Olmeda D, Vinyals A, Valero E, Cubillo E, Llorens A et al. (2005). Upregulation of MMP-9 in MDCK epithelial cell line in response to expression of the Snail transcription factor. J Cell Sci 118: 3371–3385.

    Article  CAS  PubMed  Google Scholar 

  • Kajita M, McClinic KN, Wade PA. . (2004). Aberrant expression of the transcription factors snail and slug alters the response to genotoxic stress. Mol Cell Biol 24: 7559–7566.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Llorens A, Rodrigo I, Lopez-Barcons L, Gonzalez-Garrigues M, Lozano E, Vinyals A et al. (1998). Down-regulation of E-cadherin in mouse skin carcinoma cells enhances a migratory and invasive phenotype linked to matrix metalloproteinase-9 gelatinase expression. Lab Invest 78: 1131–1142.

    CAS  PubMed  Google Scholar 

  • Manzanares M, Locascio A, Nieto MA . (2001). The increasing complexity of the Snail gene superfamily in metazoan evolution. Trends Genet 17: 178–181.

    Article  CAS  PubMed  Google Scholar 

  • Martinez-Estrada OM, Culleres A, Soriano FX, Peinado H, Bolos V, Martinez FO et al. (2005). The transcription factors Slug and Snail act as repressors of Claudin-1 expression in epithelial cells. Biochem J 394: 449–457.

    Article  Google Scholar 

  • Moody SE, Perez D, Pan TC, Sarkisian CJ, Portocarrero CP, Sterner CJ et al. (2005). The transcriptional repressor Snail promotes mammary tumour recurrence. Cancer Cell 8: 197–209.

    Article  CAS  PubMed  Google Scholar 

  • Navarro P, Gomez M, Pizarro A, Gamallo C, Quintanilla M, Cano A . (1991). A role for the E-cadherin cell–cell adhesion molecule during tumour progression of mouse epidermal carcinogenesis. J Cell Biol 115: 517–533.

    Article  CAS  PubMed  Google Scholar 

  • Nieto MA . (2002). The snail superfamily of zinc-finger transcription factors. Nat Rev Mol Cell Biol 3: 155–166.

    Article  CAS  PubMed  Google Scholar 

  • Ohkubo T, Ozawa M . (2004). The transcription factor Snail downregulates the tight junction components independently of E-cadherin downregulation. J Cell Sci 117: 1675–1685.

    Article  CAS  PubMed  Google Scholar 

  • Peinado H, Iglesias-de la Cruz MC, Olmeda D, Csiszar K, Fong KS, Vega S et al. (2005). A molecular role for lysyl oxidase-like 2 enzyme in snail regulation and tumour progression. EMBO J 24: 3446–3458.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peinado H, Marin F, Cubillo E, Stark HJ, Fusenig N, Nieto MA et al. (2004b). Snail and E47 repressors of E-cadherin induce distinct invasive and angiogenic properties in vivo. J Cell Sci 117: 2827–2839.

    Article  CAS  PubMed  Google Scholar 

  • Peinado H, Portillo F, Cano A . (2004a). Transcriptional regulation of cadherins during development and carcinogenesis. Int J Dev Biol 48: 365–375.

    Article  CAS  PubMed  Google Scholar 

  • Perez-Moreno MA, Locascio A, Rodrigo I, Dhondt G, Portillo F, Nieto MA et al. (2001). A new role for E12/E47 in the repression of E-cadherin expression and epithelial–mesenchymal transitions. J Biol Chem 276: 27424–27431.

    Article  CAS  PubMed  Google Scholar 

  • Perl AK, Wilgenbus P, Dahl U, Semb H, Christofori G . (1998). A causal role for E-cadherin in the transition from adenoma to carcinoma. Nature 392: 190–193.

    Article  CAS  PubMed  Google Scholar 

  • Sefton M, Sanchez S, Nieto MA . (1998). Conserved and divergent roles for members of the Snail family of transcription factors in the chick and mouse embryo. Development 125: 3111–3121.

    CAS  PubMed  Google Scholar 

  • Stetler-Stevenson WG, Aznavoorian S, Liotta LA . (1993). Tumour cell interactions with the extracellular matrix during invasion and metastasis. Annu Rev Cell Biol 9: 541–573.

    Article  CAS  PubMed  Google Scholar 

  • Sugimachi K, Tanaka S, Kameyama T, Taguchi K, Aishima S, Shimada M et al. (2003). Transcriptional repressor snail and progression of human hepatocellular carcinoma. Clin Cancer Res 9: 2657–2664.

    CAS  PubMed  Google Scholar 

  • Takeichi M . (1993). Cadherins in cancer: implications for invasion and metastasis. Curr Opin Cell Biol 5: 806–811.

    Article  CAS  PubMed  Google Scholar 

  • Takeichi M . (1995). Morphogenetic roles of classic cadherins. Curr Opin Cell Biol 7: 619–627.

    Article  CAS  PubMed  Google Scholar 

  • Thiery JP . (2002). Epithelial–mesenchymal transitions in tumour progression. Nat Rev Cancer 2: 442–454.

    Article  CAS  PubMed  Google Scholar 

  • Vega S, Morales AV, Ocana OH, Valdes F, Fabregat I, Nieto MA . (2004). Snail blocks the cell cycle and confers resistance to cell death. Genes Dev 18: 1131–1143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang J, Mani SA, Donaher JL, Ramaswamy S, Itzykson RA, Come C et al. (2004). Twist, a master regulator of morphogenesis, plays an essential role in tumour metastasis. Cell 117: 927–939.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Amalia Montes and Vanesa Santos for excellent technical assistance. This work was supported by grants from the biotech company Advanced in vitro Cell Technologies SL (Advancell) and from the Spanish Ministry of Science and Technology (SAF2004-00361; SAF2005-03259; NAN2004-09230-C04-02) and Instituto de Salud Carlos III (RTICCC, FIS03/C03/10; PI050656).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Cano.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olmeda, D., Jordá, M., Peinado, H. et al. Snail silencing effectively suppresses tumour growth and invasiveness. Oncogene 26, 1862–1874 (2007). https://doi.org/10.1038/sj.onc.1209997

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1209997

Keywords

This article is cited by

Search

Quick links