Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

E2F4 regulates a stable G2 arrest response to genotoxic stress in prostate carcinoma

Abstract

The retinoblastoma (pRB) family proteins regulate the E2F transcription factors; their complexes regulate critical transitions through the cell cycle. The function of these pRB family/E2F complexes, which includes p130/E2F4, in response to genotoxic agents, is not well understood. We investigated the role of E2F4 in the genotoxic stress response. Following radiation treatment, E2F4 colocalized with p130 in the nucleus during a radiation-induced stable G2-phase arrest. Arrested cells had significantly decreased expression of Cyclins A2 and B1 and decreased phosphorylation of mitotic protein monoclonal-2 (MPM-2) mitotic proteins. Small interference RNA (siRNA)-mediated knockdown of E2F4 sensitized cells to subsequent irradiation, resulting in enhanced cellular DNA damage and cell death, as determined by caspase activation and decreased clonogenic cell survival. Downstream E2F4 targets potentially involved in the progression from G2 into M phase were identified by oligonucleotide microarray expression profiling. Chromatin immunoprecipitation localized E2F4 at promoter regions of the Bub3 and Pttg1 mitotic genes following irradiation, which were among the downregulated genes identified by the microarray. These data suggest that in response to radiation, E2F4 becomes active in the nucleus, enforces a stable G2 arrest by target gene repression, and thus provides increased cell survival ability by minimizing propagation of cells that have irreparable DNA damage.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Almasan A, Linke S, Paulson T, Huang L-c, Wahl GM . (1995a). Genetic instability as a consequence of inappropriate entry and progression through S-phase. Cancer Metast Rev 14: 59–73.

    Article  CAS  Google Scholar 

  • Almasan A, Yin Y, Kelly RE, Lee EY, Bradley A, Li W et al. (1995b). Deficiency of retinoblastoma protein leads to inappropriate S-phase entry, activation of E2F-responsive genes, and apoptosis. Proc Natl Acad Sci USA 92: 5436–5440.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Attwooll C, Denchi EL, Helin K . (2004). The E2F family: specific functions and overlapping interests. EMBO J 23: 4709–4716.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baus F, Gire V, Fisher D, Piette J, Dulic V . (2003). Permanent cell cycle exit in G2 phase after DNA damage in normal human fibroblasts. EMBO J 22: 3992–4002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bindra RS, Gibson SL, Meng A, Westermark U, Jasin M, Pierce AJ et al. (2005). Hypoxia-induced down-regulation of BRCA1 expression by E2Fs. Cancer Res 65: 11597–11604.

    Article  CAS  PubMed  Google Scholar 

  • Bindra RS, Glazer PM . (2005). Genetic instability and the tumor microenvironment: towards the concept of microenvironment-induced mutagenesis. Mutat Res 569: 75–85.

    Article  CAS  PubMed  Google Scholar 

  • Budde A, Schneiderhan-Marra N, Petersen G, Brune B . (2005). Retinoblastoma susceptibility gene product pRB activates hypoxia-inducible factor-1 (HIF-1). Oncogene 24: 1802–1808.

    Article  CAS  PubMed  Google Scholar 

  • Bunz F, Dutriaux A, Lengauer C, Waldman T, Zhou S, Brown JP et al. (1998). Requirement for p53 and p21 to sustain G2 arrest after DNA damage. Science 282: 1497–1501.

    Article  CAS  PubMed  Google Scholar 

  • Chan TA, Hwang PM, Hermeking H, Kinzler KW, Vogelstein B . (2000). Cooperative effects of genes controlling the G(2)/M checkpoint. Genes Dev 14: 1584–1588.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chang BD, Broude EV, Fang J, Kalinichenko TV, Abdryashitov R, Poole JC et al. (2000). p21Waf1/Cip1/Sdi1-induced growth arrest is associated with depletion of mitosis-control proteins and leads to abnormal mitosis and endoreduplication in recovering cells. Oncogene 19: 2165–2170.

    Article  CAS  PubMed  Google Scholar 

  • Cobrinik D . (2005). Pocket proteins and cell cycle control. Oncogene 24: 2796–2809.

    Article  CAS  PubMed  Google Scholar 

  • Crosby ME, Almasan A . (2004). Opposing roles of E2Fs in cell proliferation and death. Cancer Biol Ther 3: 1208–1211.

    Article  CAS  PubMed  Google Scholar 

  • Crosby ME, Oancea M, Almasan A . (2004). p53 binding to target sites is dynamically regulated before and after ionizing radiation-mediated DNA damage. J Environ Pathol Toxicol Oncol 23: 67–79.

    Article  CAS  PubMed  Google Scholar 

  • Dimova DK, Dyson NJ . (2005). The E2F transcriptional network: old acquaintances with new faces. Oncogene 24: 2810–2826.

    Article  CAS  PubMed  Google Scholar 

  • DuPree EL, Mazumder S, Almasan A . (2004). Genotoxic stress induces expression of E2F4, leading to its association with p130 in prostate carcinoma cells. Cancer Res 64: 4390–4393.

    Article  CAS  PubMed  Google Scholar 

  • Farkas T, Hansen K, Holm K, Lukas J, Bartek J . (2002). Distinct phosphorylation events regulate p130- and p107-mediated repression of E2F-4. J Biol Chem 277: 26741–26752.

    Article  CAS  PubMed  Google Scholar 

  • Gaubatz S, Lees JA, Lindeman GJ, Livingston DM . (2001). E2F4 is exported from the nucleus in a CRM1-dependent manner. Mol Cell Biol 21: 1384–1392.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giangrande PH, Zhu W, Schlisio S, Sun X, Mori S, Gaubatz S et al. (2004). A role for 2A7E in distinguishing G1/S- and G2/M-specific transcription. Genes Dev 18: 2941–2951.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herrera RE, Sah VP, Williams BO, Makela TP, Weinberg RA, Jacks T . (1996). Altered cell cycle kinetics, gene expression, and G1 restriction point regulation in Rb-deficient fibroblasts. Mol Cell Biol 16: 2402–2407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iliakis G, Wang Y, Guan J, Wang H . (2003). DNA damage checkpoint control in cells exposed to ionizing radiation. Oncogene 22: 5834–5847.

    Article  CAS  PubMed  Google Scholar 

  • Innocente SA, Abrahamson JL, Cogswell JP, Lee JM . (1999). p53 regulates a G2 checkpoint through cyclin B1. Proc Natl Acad Sci USA 96: 2147–2152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishida S, Huang E, Zuzan H, Spang R, Leone G, West M et al. (2001). Role for E2F in control of both DNA replication and mitotic functions as revealed from DNA microarray analysis. Mol Cell Biol 21: 4684–4699.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jackson MW, Agarwal MK, Yang J, Bruss P, Uchiumi T, Agarwal ML et al. (2005). p130/p107/p105Rb-dependent transcriptional repression during DNA-damage-induced cell-cycle exit at G2 . J Cell Sci 118: 1821–1832.

    Article  CAS  PubMed  Google Scholar 

  • Kastan MB, Bartek J . (2004). Cell-cycle checkpoints and cancer. Nature 432: 316–323.

    Article  CAS  PubMed  Google Scholar 

  • Linke SP, Clarkin KC, Di Leonardo A, Tsou A, Wahl GM . (1996). A reversible, p53-dependent G0/G1 cell cycle arrest induced by ribonucleotide depletion in the absence of detectable DNA damage. Genes Dev 10: 934–947.

    Article  CAS  PubMed  Google Scholar 

  • Narita M, Nunez S, Heard E, Lin AW, Hearn SA, Spector DL et al. (2003). Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Cell 113: 703–716.

    Article  CAS  PubMed  Google Scholar 

  • Niculescu III AB, Chen X, Smeets M, Hengst L, Prives C, Reed SI . (1998). Effects of p21(Cip1/Waf1) at both the G1/S and the G2/M cell cycle transitions: pRb is a critical determinant in blocking DNA replication and in preventing endoreduplication. Mol Cell Biol 18: 629–643.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ossovskaya VS, Mazo IA, Chernov MV, Chernova OB, Strezoska Z, Kondratov R et al. (1996). Use of genetic suppressor elements to dissect distinct biological effects of separate p53 domains. Proc Natl Acad Sci USA 93: 10309–10314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pickering MT, Kowalik TF . (2006). Rb inactivation leads to E2F1-mediated DNA double-strand break accumulation. Oncogene 25: 746–755.

    Article  CAS  PubMed  Google Scholar 

  • Polager S, Ginsberg D . (2003). E2F mediates sustained G2 arrest and down-regulation of Stathmin and AIM-1 expression in response to genotoxic stress. J Biol Chem 278: 1443–1449.

    Article  CAS  PubMed  Google Scholar 

  • Ray S, Almasan A . (2003). Apoptosis induction in prostate cancer cells and xenografts by combined treatment with Apo2 ligand/tumor necrosis factor-related apoptosis-inducing ligand and CPT-11. Cancer Res 63: 4713–4723.

    CAS  PubMed  Google Scholar 

  • Rayman JB, Takahashi Y, Indjeian VB, Dannenberg JH, Catchpole S, Watson RJ et al. (2002). E2F mediates cell cycle-dependent transcriptional repression in vivo by recruitment of an HDAC1/mSin3B corepressor complex. Genes Dev 16: 933–947.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ren B, Cam H, Takahashi Y, Volkert T, Terragni J, Young RA et al. (2002). E2F integrates cell cycle progression with DNA repair, replication, and G(2)/M checkpoints. Genes Dev 16: 245–256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rogoff HA, Pickering MT, Debatis ME, Jones S, Kowalik TF . (2002). E2F1 induces phosphorylation of p53 that is coincident with p53 accumulation and apoptosis. Mol Cell Biol 22: 5308–5318.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sardet C, Vidal M, Cobrinik D, Geng Y, Onufryk C, Chen A et al. (1995). E2F-4 and E2F-5, two members of the E2F family, are expressed in the early phases of the cell cycle. Proc Natl Acad Sci USA 92: 2403–2407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stevens C, Smith L, La Thangue NB . (2003). Chk2 activates E2F-1 in response to DNA damage. Nat Cell Biol 5: 401–409.

    Article  CAS  PubMed  Google Scholar 

  • Takahashi Y, Rayman JB, Dynlacht BD . (2000). Analysis of promoter binding by the E2F and pRB families in vivo: distinct E2F proteins mediate activation and repression. Genes Dev 14: 804–816.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor WR, Schonthal AH, Galante J, Stark GR . (2001). p130/E2F4 binds to and represses the cdc2 promoter in response to p53. J Biol Chem 276: 1998–2006.

    Article  CAS  PubMed  Google Scholar 

  • Taylor WR, Stark GR . (2001). Regulation of the G2/M transition by p53. Oncogene 20: 1803–1815.

    Article  CAS  PubMed  Google Scholar 

  • Trimarchi JM, Lees JA . (2002). Sibling rivalry in the E2F family. Nat Rev Mol Cell Biol 3: 11–20.

    Article  CAS  PubMed  Google Scholar 

  • Waghray A, Schober M, Feroze F, Yao F, Virgin J, Chen YQ . (2001). Identification of differentially expressed genes by serial analysis of gene expression in human prostate cancer. Cancer Res 61: 4283–4286.

    CAS  PubMed  Google Scholar 

  • Wahl GM, Carr AM . (2001). The evolution of diverse biological responses to DNA damage: insights from yeast and p53. Nat Cell Biol 3: E277–E286.

    Article  CAS  PubMed  Google Scholar 

  • Wells J, Boyd KE, Fry CJ, Bartley SM, Farnham PJ . (2000). Target gene specificity of E2F and pocket protein family members in living cells. Mol Cell Biol 20: 5797–5807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu B, Kim ST, Lim DS, Kastan MB . (2002). Two molecularly distinct G(2)/M checkpoints are induced by ionizing irradiation. Mol Cell Biol 22: 1049–1059.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan T, Desai AB, Jacobberger JW, Sramkoski RM, Loh T, Kinsella TJ . (2004). CHK1 and CHK2 are differentially involved in mismatch repair-mediated 6-thioguanine-induced cell cycle checkpoint responses. Mol Cancer Ther 3: 1147–1157.

    CAS  PubMed  Google Scholar 

  • Zhu W, Giangrande PH, Nevins JR . (2004). E2Fs link the control of G1/S and G2/M transcription. Embo J 23: 4615–4626.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Drs W Heston and A Gudkov (Cleveland Clinic) for valuable reagents and B Dynlacht (NYU) for advice. We also thank the Flow Cytometry and Imaging Core facilities staff at the Cleveland Clinic Foundation, and RM Sramkowski at the Case Comprehensive Cancer Center for their invaluable help. This work was supported by research grants from the US National Institute of Health (CA81504 and CA82858).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Almasan.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Crosby, M., Jacobberger, J., Gupta, D. et al. E2F4 regulates a stable G2 arrest response to genotoxic stress in prostate carcinoma. Oncogene 26, 1897–1909 (2007). https://doi.org/10.1038/sj.onc.1209998

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1209998

Keywords

Search

Quick links