Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Gli1 acts through Snail and E-cadherin to promote nuclear signaling by β-catenin

Abstract

The Hedgehog pathway transcription factor Gli1 induces transformation of epithelial cells via induction of Snail, a repressor of E-cadherin (E-cad). E-cad is normally complexed with β-catenin at the cell membrane. Loss of E-cad during developmental epithelial–mesenchymal transitions can switch β-catenin from its role at adherens junctions to its role in nuclear transcription. During tumorigenesis it is unclear which pathways trigger this switch. In the current study, gain- and loss-of-function approaches identified E-cad as a selective inhibitor of transformation by Gli1, and Snail knockdown was rescued by downregulation of E-cad. Gli1 induced relocalization of β-catenin from the cell membrane to the nucleus. The ability of wild-type or mutant alleles of E-cad to modulate transformation by Gli1 correlated with their ability to regulate localization of β-catenin. Inhibition of Wnt-β-catenin signaling by dominant negative Tcf4 selectively blocked in vitro transformation by Gli1. In Gli1-transgenic mice, infiltrating skin tumor cells expressed active, unphosphorylated β-catenin. Our studies identify E-cad as a selective suppressor of transformation by Gli1 and point to the Sonic Hedgehog–Gli1 pathway as a key regulator of the β-catenin switch in epithelial cells and cancers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Abbreviations

Shh:

Sonic Hedgehog

EMT:

epithelial-mesenchymal transition

DN:

dominant-negative

WT:

wild-type

BCC:

basal cell carcinoma

shRNA:

short-hairpin RNA

References

  • Akiyoshi T, Nakamura M, Koga K, Nakashima H, Yao T, Tsuneyoshi M et al. (2006). Gli1, downregulated in colorectal cancers, inhibits proliferation of colon cancer cells involving Wnt signalling activation. Gut 55: 991–999.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alonso L, Fuchs E . (2003). Stem cells in the skin: waste not, Wnt not. Genes Dev 17: 1189–1200.

    Article  CAS  PubMed  Google Scholar 

  • Ascano JM, Beverly LJ, Capobianco AJ . (2003). The C-terminal PDZ-ligand of JAGGED1 is essential for cellular transformation. J Biol Chem 278: 8771–8779.

    Article  CAS  PubMed  Google Scholar 

  • Bachelder RE, Yoon SO, Franci C, Garcia de Herreros A, Mercurio AM . (2005). Glycogen synthase kinase-3 is an endogenous inhibitor of Snail transcription: implications for the epithelial–mesenchymal transition. J Cell Biol 168: 29–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barrallo-Gimeno A, Nieto MA . (2005). The Snail genes as inducers of cell movement and survival: implications in development and cancer. Development 132: 3151–3161.

    Article  CAS  PubMed  Google Scholar 

  • Bienz M . (2005). Catenin: a pivot between cell adhesion and Wnt signalling. Curr Biol 15: R64–R67.

    Article  CAS  PubMed  Google Scholar 

  • Bonifas JM, Pennypacker S, Chuang PT, McMahon AP, Williams M, Rosenthal A et al. (2001). Activation of expression of hedgehog target genes in basal cell carcinomas. J Invest Dermatol 116: 739–742.

    Article  CAS  PubMed  Google Scholar 

  • Brembeck FH, Rosario M, Birchmeier W . (2006). Balancing cell adhesion and Wnt signaling, the key role of beta-catenin. Curr Opin Genet Dev 16: 51–59.

    Article  CAS  PubMed  Google Scholar 

  • Cavallaro U, Christofori G . (2004). Cell adhesion and signalling by cadherins and Ig-CAMs in cancer. Nat Rev Cancer 4: 118–132.

    Article  CAS  PubMed  Google Scholar 

  • Ciruna B, Rossant J . (2001). FGF signaling regulates mesoderm cell fate specification and morphogenetic movement at the primitive streak. Dev Cell 1: 37–49.

    Article  CAS  PubMed  Google Scholar 

  • El Bahrawy M, El Masry N, Alison M, Poulsom R, Fallowfield M . (2003). Expression of beta-catenin in basal cell carcinoma. Br J Dermatol 148: 964–970.

    Article  CAS  PubMed  Google Scholar 

  • Foster KW, Ren S, Louro ID, Lobo-Ruppert SM, McKie-Bell P, Grizzle W et al. (1999). Oncogene expression cloning by retroviral transduction of adenovirus E1a-immortalized rat kidney RK3E cells: transformation of a host with epithelial features by c-MYC and the zinc-finger protein GKLF. Cell Growth Differ 10: 423–434.

    CAS  PubMed  Google Scholar 

  • Gottardi CJ, Gumbiner BM . (2004). Distinct molecular forms of beta-catenin are targeted to adhesive or transcriptional complexes. J Cell Biol 167: 339–349.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gottardi CJ, Wong E, Gumbiner BM . (2001). E-cadherin suppresses cellular transformation by inhibiting beta-catenin signaling in an adhesion-independent manner. J Cell Biol 153: 1049–1060.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gumbiner BM . (2005). Regulation of cadherin-mediated adhesion in morphogenesis. Nat Rev Mol Cell Biol 6: 622–634.

    Article  CAS  PubMed  Google Scholar 

  • Hooper JE, Scott MP . (2005). Communicating with Hedgehogs. Nat Rev Mol Cell Biol 6: 306–317.

    Article  CAS  PubMed  Google Scholar 

  • Huang CC, Liu Z, Li X, Bailey SK, Nail CD, Foster KW et al. (2005). KLF4 and PCNA identify stages of tumor initiation in a conditional model of cutaneous squamous epithelial neoplasia. Cancer Biol Ther 4: 1401–1408.

    Article  CAS  PubMed  Google Scholar 

  • Inoki K, Ouyang H, Zhu T, Lindvall C, Wang Y, Zhang X et al. (2006). TSC2 integrates Wnt and energy signals via a coordinated phosphorylation by AMPK and GSK3 to regulate cell growth. Cell 126: 955–968.

    Article  CAS  PubMed  Google Scholar 

  • Jian H, Shen X, Liu I, Semenov M, He X, Wang XF . (2006). Smad3-dependent nuclear translocation of beta-catenin is required for TGF-beta1-induced proliferation of bone marrow-derived adult human mesenchymal stem cells. Genes Dev 20: 666–674.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kolligs FT, Hu G, Dang CV, Fearon ER . (1999). Neoplastic transformation of RK3E by mutant β-catenin requires deregulation of Tcf/Lef transcription but not activation of c-myc expression. Mol Cell Biol 19: 5696–5706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kolligs FT, Kolligs B, Hajra KM, Hu G, Tani M, Cho KR et al. (2000). Catenin is regulated by the APC tumor suppressor and its oncogenic activity is distinct from that of beta-catenin. Genes Dev 14: 1319–1331.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Deng W, Nail CD, Bailey SK, Kraus MH, Ruppert JM et al. (2006). Snail induction is an early response to Gli1 that determines the efficiency of epithelial transformation. Oncogene 25: 609–621.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Louro ID, Bailey EC, Li X, South LS, McKie-Bell PR, Yoder BK et al. (2002). Comparative gene expression profile analysis of GLI and c-MYC in an epithelial model of malignant transformation. Cancer Res 62: 5867–5873.

    CAS  PubMed  Google Scholar 

  • Louro ID, McKie-Bell P, Gosnell H, Brindley BC, Bucy RP, Ruppert JM . (1999). The zinc-finger protein GLI induces cellular sensitivity to the mTOR inhibitor rapamycin. Cell Growth Differ 10: 503–516.

    CAS  PubMed  Google Scholar 

  • Mullor JL, Dahmane N, Sun T, Altaba A . (2001). Wnt signals are targets and mediators of Gli function. Curr Biol 11: 769–773.

    Article  CAS  PubMed  Google Scholar 

  • Nagafuchi A, Shirayoshi Y, Okazaki K, Yasuda K, Takeichi M . (1987). Transformation of cell adhesion properties by exogenously introduced E-cadherin cDNA. Nature 329: 341–343.

    Article  CAS  PubMed  Google Scholar 

  • Nelson WJ, Nusse R . (2004). Convergence of Wnt, beta-catenin, and cadherin pathways. Science 303: 1483–1487.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nicolas M, Wolfer A, Raj K, Kummer JA, Mill P, van Noort M et al. (2003). Notch1 functions as a tumor suppressor in mouse skin. Nat Genet 33: 416–421.

    Article  CAS  PubMed  Google Scholar 

  • Nusse R . (2003). Wnts and Hedgehogs: lipid-modified proteins and similarities in signaling mechanisms at the cell surface. Development 130: 5297–5305.

    Article  CAS  PubMed  Google Scholar 

  • Price MA . (2006). CKI, there's more than one: casein kinase I family members in Wnt and Hedgehog signaling. Genes Dev 20: 399–410.

    Article  CAS  PubMed  Google Scholar 

  • Ruppert JM, Vogelstein B, Kinzler KW . (1991). The zinc-finger protein GLI transforms rodent cells in cooperation with adenovirus E1A. Mol Cell Biol 11: 1724–1728.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saldanha G, Ghura V, Potter L, Fletcher A . (2004). Nuclear beta-catenin in basal cell carcinoma correlates with increased proliferation. Br J Dermatol 151: 157–164.

    Article  CAS  PubMed  Google Scholar 

  • Silva-Vargas V, Lo CC, Giangreco A, Ofstad T, Prowse DM, Braun KM et al. (2005). Beta-catenin and Hedgehog signal strength can specify number and location of hair follicles in adult epidermis without recruitment of bulge stem cells. Dev Cell 9: 121–131.

    Article  CAS  PubMed  Google Scholar 

  • van de Wetering M, Barker N, Harkes IC, van der HM, Dijk NJ, Hollestelle A et al. (2001). Mutant E-cadherin breast cancer cells do not display constitutive Wnt signaling. Cancer Res 61: 278–284.

    CAS  PubMed  Google Scholar 

  • van den Brink GR, Bleuming SA, Hardwick JC, Schepman BL, Offerhaus GJ, Keller JJ et al. (2004). Indian Hedgehog is an antagonist of Wnt signaling in colonic epithelial cell differentiation. Nat Genet 36: 277–282.

    Article  CAS  PubMed  Google Scholar 

  • Von Ohlen T, Lessing D, Nusse R, Hooper JE . (1997). Hedgehog signaling regulates transcription through cubitus interruptus, a sequence-specific DNA-binding protein. Proc Natl Acad Sci USA 94: 2404–2409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yook JI, Li XY, Ota I, Fearon ER, Weiss SJ . (2005). Wnt-dependent regulation of the E-cadherin repressor Snail. J Biol Chem 280: 11740–11748.

    Article  CAS  PubMed  Google Scholar 

  • Zhou BP, Deng J, Xia W, Xu J, Li YM, Gunduz M et al. (2004). Dual regulation of Snail by GSK-3β-mediated phosphorylation in control of epithelial–mesenchymal transition. Nat Cell Biol 6: 931–940.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Eric Fearon and Frank Kolligs for Tcf4ΔN31 cells, and Bert Vogelstein, M Takeichi, Robert Kay and Cara J Gottardi for plasmids. This work was supported by Grants CA094030 and CA065686 from the US National Cancer Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J M Ruppert.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, X., Deng, W., Lobo-Ruppert, S. et al. Gli1 acts through Snail and E-cadherin to promote nuclear signaling by β-catenin. Oncogene 26, 4489–4498 (2007). https://doi.org/10.1038/sj.onc.1210241

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210241

Keywords

This article is cited by

Search

Quick links