Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Structure–function–rescue: the diverse nature of common p53 cancer mutants

Abstract

The tumor suppressor protein p53 is inactivated by mutation in about half of all human cancers. Most mutations are located in the DNA-binding domain of the protein. It is, therefore, important to understand the structure of p53 and how it responds to mutation, so as to predict the phenotypic response and cancer prognosis. In this review, we present recent structural and systematic functional data that elucidate the molecular basis of how p53 is inactivated by different types of cancer mutation. Intriguingly, common cancer mutants exhibit a variety of distinct local structural changes, while the overall structural scaffold is largely preserved. The diverse structural and energetic response to mutation determines: (i) the folding state of a particular mutant under physiological conditions; (ii) its affinity for the various p53 target DNA sequences; and (iii) its protein–protein interactions both within the p53 tetramer and with a multitude of regulatory proteins. Further, the structural details of individual mutants provide the basis for the design of specific and generic drugs for cancer therapy purposes. In combination with studies on second-site suppressor mutations, it appears that some mutants are ideal rescue candidates, whereas for others simple pharmacological rescue by small molecule drugs may not be successful.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Abbreviations

T-p53C:

p53 core domain containing the four point mutations M133L, V203A, N239Y and N268D

References

  • Aguilar F, Hussain SP, Cerutti P . (1993). Aflatoxin B1 induces the transversion of G → T in codon 249 of the p53 tumor suppressor gene in human hepatocytes. Proc Natl Acad Sci USA 90: 8586–8590.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ang HC, Joerger AC, Mayer S, Fersht AR . (2006). Effects of common cancer mutations on stability and DNA binding of full-length p53 compared with isolated core domains. J Biol Chem 281: 21934–21941.

    Article  CAS  PubMed  Google Scholar 

  • Balagurumoorthy P, Sakamoto H, Lewis MS, Zambrano N, Clore GM, Gronenborn AM et al. (1995). Four p53 DNA-binding domain peptides bind natural p53-response elements and bend the DNA. Proc Natl Acad Sci USA 92: 8591–8595.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baroni TE, Wang T, Qian H, Dearth LR, Truong LN, Zeng J et al. (2004). A global suppressor motif for p53 cancer mutants. Proc Natl Acad Sci USA 101: 4930–4935.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bell S, Klein C, Muller L, Hansen S, Buchner J . (2002). p53 contains large unstructured regions in its native state. J Mol Biol 322: 917–927.

    Article  CAS  PubMed  Google Scholar 

  • Blagosklonny MV . (2000). p53 from complexity to simplicity: mutant p53 stabilization, gain-of-function, and dominant-negative effect. FASEB J 14: 1901–1907.

    Article  CAS  PubMed  Google Scholar 

  • Bode AM, Dong Z . (2004). Post-translational modification of p53 in tumorigenesis. Nat Rev Cancer 4: 793–805.

    Article  CAS  PubMed  Google Scholar 

  • Brachmann RK, Yu K, Eby Y, Pavletich NP, Boeke JD . (1998). Genetic selection of intragenic suppressor mutations that reverse the effect of common p53 cancer mutations. EMBO J 17: 1847–1859.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Braithwaite AW, Del Sal G, Lu X . (2006). Some p53-binding proteins that can function as arbiters of life and death. Cell Death Differ 13: 984–993.

    Article  CAS  PubMed  Google Scholar 

  • Buckle AM, Cramer P, Fersht AR . (1996). Structural and energetic responses to cavity-creating mutations in hydrophobic cores: observation of a buried water molecule and the hydrophilic nature of such hydrophobic cavities. Biochemistry 35: 4298–4305.

    Article  CAS  PubMed  Google Scholar 

  • Buckle AM, Henrick K, Fersht AR . (1993). Crystal structural analysis of mutations in the hydrophobic cores of barnase. J Mol Biol 234: 847–860.

    Article  CAS  PubMed  Google Scholar 

  • Bullock AN, Henckel J, Fersht AR . (2000). Quantitative analysis of residual folding and DNA binding in mutant p53 core domain: definition of mutant states for rescue in cancer therapy. Oncogene 19: 1245–1256.

    Article  CAS  PubMed  Google Scholar 

  • Buschmann T, Minamoto T, Wagle N, Fuchs SY, Adler V, Mai M et al. (2000). Analysis of JNK, Mdm2 and p14(ARF) contribution to the regulation of mutant p53 stability. J Mol Biol 295: 1009–1021.

    Article  CAS  PubMed  Google Scholar 

  • Butler JS, Loh SN . (2003). Structure, function, and aggregation of the zinc-free form of the p53 DNA binding domain. Biochemistry 42: 2396–2403.

    Article  CAS  PubMed  Google Scholar 

  • Butler JS, Loh SN . (2005). Kinetic partitioning during folding of the p53 DNA binding domain. J Mol Biol 350: 906–918.

    Article  CAS  PubMed  Google Scholar 

  • Bykov VJ, Selivanova G, Wiman KG . (2003). Small molecules that reactivate mutant p53. Eur J Cancer 39: 1828–1834.

    Article  CAS  PubMed  Google Scholar 

  • Canadillas JM, Tidow H, Freund SM, Rutherford TJ, Ang HC, Fersht AR . (2006). Solution structure of p53 core domain: structural basis for its instability. Proc Natl Acad Sci USA 103: 2109–2114.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chan WM, Siu WY, Lau A, Poon RY . (2004). How many mutant p53 molecules are needed to inactivate a tetramer? Mol Cell Biol 24: 3536–3551.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chène P . (2001). The role of tetramerization in p53 function. Oncogene 20: 2611–2617.

    Article  PubMed  Google Scholar 

  • Cho Y, Gorina S, Jeffrey PD, Pavletich NP . (1994). Crystal structure of a p53 tumor suppressor–DNA complex: understanding tumorigenic mutations. Science 265: 346–355.

    Article  CAS  PubMed  Google Scholar 

  • Clore GM, Ernst J, Clubb R, Omichinski JG, Kennedy WM, Sakaguchi K et al. (1995). Refined solution structure of the oligomerization domain of the tumour suppressor p53. Nat Struct Biol 2: 321–333.

    Article  CAS  PubMed  Google Scholar 

  • Cook A, Milner J . (1990). Evidence for allosteric variants of wild-type p53, a tumour suppressor protein. Br J Cancer 61: 548–552.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cuff AL, Janes RW, Martin AC . (2006). Analysing the ability to retain sidechain hydrogen-bonds in mutant proteins. Bioinformatics 22: 1464–1470.

    Article  CAS  PubMed  Google Scholar 

  • Cuff AL, Martin AC . (2004). Analysis of void volumes in proteins and application to stability of the p53 tumour suppressor protein. J Mol Biol 344: 1199–1209.

    Article  CAS  PubMed  Google Scholar 

  • Dawson R, Muller L, Dehner A, Klein C, Kessler H, Buchner J . (2003). The N-terminal domain of p53 is natively unfolded. J Mol Biol 332: 1131–1141.

    Article  CAS  PubMed  Google Scholar 

  • Dearth LR, Qian H, Wang T, Baroni TE, Zeng J, Chen SW et al. (2007). Inactive full-length p53 mutants lacking dominant wild-type p53 inhibition highlight loss-of-heterozygosity as an important aspect of p53 status in human cancers. Carcinogenesis 28: 289–298.

    Article  CAS  PubMed  Google Scholar 

  • Dehner A, Klein C, Hansen S, Müller L, Buchner J, Schwaiger M et al. (2005). Cooperative binding of p53 to DNA: regulation by protein–protein interactions through a double salt bridge. Angew Chem Int Edn Engl 44: 5247–5251.

    Article  CAS  Google Scholar 

  • DeLano WL . (2002). The PyMOL Molecular Graphics System. DeLano Scientific: San Carlos, CA.

    Google Scholar 

  • Derbyshire DJ, Basu BP, Serpell LC, Joo WS, Date T, Iwabuchi K et al. (2002). Crystal structure of human 53BP1 BRCT domains bound to p53 tumour suppressor. EMBO J 21: 3863–3872.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Di Como CJ, Prives C . (1998). Human tumor-derived p53 proteins exhibit binding site selectivity and temperature sensitivity for transactivation in a yeast-based assay. Oncogene 16: 2527–2539.

    Article  CAS  PubMed  Google Scholar 

  • DiGiammarino EL, Lee AS, Cadwell C, Zhang W, Bothner B, Ribeiro RC et al. (2002). A novel mechanism of tumorigenesis involving pH-dependent destabilization of a mutant p53 tetramer. Nat Struct Biol 9: 12–16.

    Article  CAS  PubMed  Google Scholar 

  • Duan J, Nilsson L . (2006). Effect of Zn2+ on DNA recognition and stability of the p53 DNA-binding domain. Biochemistry 45: 7483–7492.

    Article  CAS  PubMed  Google Scholar 

  • Dunker AK, Cortese MS, Romero P, Iakoucheva LM, Uversky VN . (2005). Flexible nets. The roles of intrinsic disorder in protein interaction networks. FEBS J 272: 5129–5148.

    Article  CAS  PubMed  Google Scholar 

  • el-Deiry WS, Kern SE, Pietenpol JA, Kinzler KW, Vogelstein B . (1992). Definition of a consensus binding site for p53. Nat Genet 1: 45–49.

    Article  CAS  PubMed  Google Scholar 

  • Eriksson AE, Baase WA, Zhang XJ, Heinz DW, Blaber M, Baldwin EP et al. (1992). Response of a protein structure to cavity-creating mutations and its relation to the hydrophobic effect. Science 255: 178–183.

    Article  CAS  PubMed  Google Scholar 

  • Friedler A, DeDecker BS, Freund SM, Blair C, Rüdiger S, Fersht AR . (2004). Structural distortion of p53 by the mutation R249S and its rescue by a designed peptide: implications for ‘mutant conformation’. J Mol Biol 336: 187–196.

    Article  CAS  PubMed  Google Scholar 

  • Friedler A, Hansson LO, Veprintsev DB, Freund SM, Rippin TM, Nikolova PV et al. (2002). A peptide that binds and stabilizes p53 core domain: chaperone strategy for rescue of oncogenic mutants. Proc Natl Acad Sci USA 99: 937–942.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Friedler A, Veprintsev DB, Freund SM, von Glos KI, Fersht AR . (2005a). Modulation of binding of DNA to the C-terminal domain of p53 by acetylation. Structure 13: 629–636.

    Article  CAS  PubMed  Google Scholar 

  • Friedler A, Veprintsev DB, Hansson LO, Fersht AR . (2003). Kinetic instability of p53 core domain mutants: implications for rescue by small molecules. J Biol Chem 278: 24108–24112.

    Article  CAS  PubMed  Google Scholar 

  • Friedler A, Veprintsev DB, Rutherford T, von Glos KI, Fersht AR . (2005b). Binding of Rad51 and other peptide sequences to a promiscuous, highly electrostatic binding site in p53. J Biol Chem 280: 8051–8059.

    Article  CAS  PubMed  Google Scholar 

  • Gannon JV, Greaves R, Iggo R, Lane DP . (1990). Activating mutations in p53 produce a common conformational effect. A monoclonal antibody specific for the mutant form. EMBO J 9: 1595–1602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghebranious N, Knoll BJ, Wu H, Lozano G, Sell S . (1995). Characterization of a murine p53ser246 mutant equivalent to the human p53ser249 associated with hepatocellular carcinoma and aflatoxin exposure. Mol Carcinog 13: 104–111.

    Article  CAS  PubMed  Google Scholar 

  • Gorina S, Pavletich NP . (1996). Structure of the p53 tumor suppressor bound to the ankyrin and SH3 domains of 53BP2. Science 274: 1001–1005.

    Article  CAS  PubMed  Google Scholar 

  • Grossman SR . (2001). p300/CBP/p53 interaction and regulation of the p53 response. Eur J Biochem 268: 2773–2778.

    Article  CAS  PubMed  Google Scholar 

  • Gu W, Shi XL, Roeder RG . (1997). Synergistic activation of transcription by CBP and p53. Nature 387: 819–823.

    Article  CAS  PubMed  Google Scholar 

  • Hamroun D, Kato S, Ishioka C, Claustres M, Beroud C, Soussi T . (2006). The UMD TP53 database and website: update and revisions. Hum Mutat 27: 14–20.

    Article  CAS  PubMed  Google Scholar 

  • Hartman PE, Roth JR . (1973). Mechanisms of suppression. Adv Genet 17: 1–105.

    Article  CAS  PubMed  Google Scholar 

  • Higashimoto Y, Asanomi Y, Takakusagi S, Lewis MS, Uosaki K, Durell SR et al. (2006). Unfolding, aggregation, and amyloid formation by the tetramerization domain from mutant p53 associated with lung cancer. Biochemistry 45: 1608–1619.

    Article  CAS  PubMed  Google Scholar 

  • Ho WC, Fitzgerald MX, Marmorstein R . (2006). Structure of the p53 core domain dimer bound to DNA. J Biol Chem 281: 20494–20502.

    Article  CAS  PubMed  Google Scholar 

  • Huyen Y, Jeffrey PD, Derry WB, Rothman JH, Pavletich NP, Stavridi ES et al. (2004). Structural differences in the DNA binding domains of human p53 and its C. elegans ortholog Cep-1. Structure 12: 1237–1243.

    Article  CAS  PubMed  Google Scholar 

  • Inga A, Monti P, Fronza G, Darden T, Resnick MA . (2001). p53 mutants exhibiting enhanced transcriptional activation and altered promoter selectivity are revealed using a sensitive, yeast-based functional assay. Oncogene 20: 501–513.

    Article  CAS  PubMed  Google Scholar 

  • Ishioka C, Shimodaira H, Englert C, Shimada A, Osada M, Jia LQ et al. (1997). Oligomerization is not essential for growth suppression by p53 in p53-deficient osteosarcoma Saos-2 cells. Biochem Biophys Res Commun 232: 54–60.

    Article  CAS  PubMed  Google Scholar 

  • Issaeva N, Friedler A, Bozko P, Wiman KG, Fersht AR, Selivanova G . (2003). Rescue of mutants of the tumor suppressor p53 in cancer cells by a designed peptide. Proc Natl Acad Sci USA 100: 13303–13307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeffrey PD, Gorina S, Pavletich NP . (1995). Crystal structure of the tetramerization domain of the p53 tumor suppressor at 1.7 angstroms. Science 267: 1498–1502.

    Article  CAS  PubMed  Google Scholar 

  • Joerger AC, Allen MD, Fersht AR . (2004). Crystal structure of a superstable mutant of human p53 core domain. Insights into the mechanism of rescuing oncogenic mutations. J Biol Chem 279: 1291–1296.

    Article  CAS  PubMed  Google Scholar 

  • Joerger AC, Ang HC, Veprintsev DB, Blair CM, Fersht AR . (2005). Crystal structures of p53 cancer mutants and mechanism of rescue by second-site suppressor mutations. J Biol Chem 280: 16030–16037.

    Article  CAS  PubMed  Google Scholar 

  • Joerger AC, Ang HC, Fersht AR . (2006). Structural basis for understanding oncogenic p53 mutations and designing rescue drugs. Proc Natl Acad Sci USA 103: 15056–15061.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joo WS, Jeffrey PD, Cantor SB, Finnin MS, Livingston DM, Pavletich NP . (2002). Structure of the 53BP1 BRCT region bound to p53 and its comparison to the Brca1 BRCT structure. Genes Dev 16: 583–593.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kato S, Han SY, Liu W, Otsuka K, Shibata H, Kanamaru R et al. (2003). Understanding the function–structure and function–mutation relationships of p53 tumor suppressor protein by high-resolution missense mutation analysis. Proc Natl Acad Sci USA 100: 8424–8429.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawaguchi T, Kato S, Otsuka K, Watanabe G, Kumabe T, Tominaga T et al. (2005). The relationship among p53 oligomer formation, structure and transcriptional activity using a comprehensive missense mutation library. Oncogene 24: 6976–6981.

    Article  CAS  PubMed  Google Scholar 

  • Kitayner M, Rozenberg H, Kessler N, Rabinovich D, Shaulov L, Haran TE et al. (2006). Structural basis of DNA recognition by p53 tetramers. Mol Cell 22: 741–753.

    Article  CAS  PubMed  Google Scholar 

  • Klein C, Planker E, Diercks T, Kessler H, Kunkele KP, Lang K et al. (2001). NMR spectroscopy reveals the solution dimerization interface of p53 core domains bound to their consensus DNA. J Biol Chem 276: 49020–49027.

    Article  CAS  PubMed  Google Scholar 

  • Kussie PH, Gorina S, Marechal V, Elenbaas B, Moreau J, Levine AJ et al. (1996). Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain. Science 274: 948–953.

    Article  CAS  PubMed  Google Scholar 

  • Laurent-Puig P, Zucman-Rossi J . (2006). Genetics of hepatocellular tumors. Oncogene 25: 3778–3786.

    Article  CAS  PubMed  Google Scholar 

  • Lavin MF, Gueven N . (2006). The complexity of p53 stabilization and activation. Cell Death Differ 13: 941–950.

    Article  CAS  PubMed  Google Scholar 

  • Lee H, Mok KH, Muhandiram R, Park KH, Suk JE, Kim DH et al. (2000). Local structural elements in the mostly unstructured transcriptional activation domain of human p53. J Biol Chem 275: 29426–29432.

    Article  CAS  PubMed  Google Scholar 

  • Legros Y, Meyer A, Ory K, Soussi T . (1994). Mutations in p53 produce a common conformational effect that can be detected with a panel of monoclonal antibodies directed toward the central part of the p53 protein. Oncogene 9: 3689–3694.

    CAS  PubMed  Google Scholar 

  • Lilyestrom W, Klein MG, Zhang R, Joachimiak A, Chen XS . (2006). Crystal structure of SV40 large T-antigen bound to p53: interplay between a viral oncoprotein and a cellular tumor suppressor. Genes Dev 20: 2373–2382.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu H, Levine AJ . (1995). Human TAFII31 protein is a transcriptional coactivator of the p53 protein. Proc Natl Acad Sci USA 92: 5154–5158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lunter G, Hein J . (2004). A nucleotide substitution model with nearest-neighbour interactions. Bioinformatics 20 (Suppl 1): I216–I223.

    Article  CAS  PubMed  Google Scholar 

  • Marine JC, Francoz S, Maetens M, Wahl G, Toledo F, Lozano G . (2006). Keeping p53 in check: essential and synergistic functions of Mdm2 and Mdm4. Cell Death Differ 13: 927–934.

    Article  CAS  PubMed  Google Scholar 

  • Mateu MG, Fersht AR . (1998). Nine hydrophobic side chains are key determinants of the thermodynamic stability and oligomerization status of tumour suppressor p53 tetramerization domain. EMBO J 17: 2748–2758.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mateu MG, Fersht AR . (1999). Mutually compensatory mutations during evolution of the tetramerization domain of tumor suppressor p53 lead to impaired hetero-oligomerization. Proc Natl Acad Sci USA 96: 3595–3599.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mathe E, Olivier M, Kato S, Ishioka C, Hainaut P, Tavtigian SV . (2006a). Computational approaches for predicting the biological effect of p53 missense mutations: a comparison of three sequence analysis based methods. Nucleic Acids Res 34: 1317–1325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mathe E, Olivier M, Kato S, Ishioka C, Vaisman I, Hainaut P . (2006b). Predicting the transactivation activity of p53 missense mutants using a four-body potential score derived from Delaunay tessellations. Hum Mutat 27: 163–172.

    Article  CAS  PubMed  Google Scholar 

  • Matsumura I, Ellington AD . (1999). In vitro evolution of thermostable p53 variants. Protein Sci 8: 731–740.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Menendez D, Inga A, Resnick MA . (2006). The biological impact of the human master regulator p53 can be altered by mutations that change the spectrum and expression of its target genes. Mol Cell Biol 26: 2297–2308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Midgley CA, Lane DP . (1997). p53 protein stability in tumour cells is not determined by mutation but is dependent on Mdm2 binding. Oncogene 15: 1179–1189.

    Article  CAS  PubMed  Google Scholar 

  • Mittl PR, Chene P, Grutter MG . (1998). Crystallization and structure solution of p53 (residues 326–356) by molecular replacement using an NMR model as template. Acta Crystallogr D 54: 86–89.

    Article  CAS  PubMed  Google Scholar 

  • Momand J, Wu HH, Dasgupta G . (2000). MDM2 – master regulator of the p53 tumor suppressor protein. Gene 242: 15–29.

    Article  CAS  PubMed  Google Scholar 

  • Müller-Tiemann BF, Halazonetis TD, Elting JJ . (1998). Identification of an additional negative regulatory region for p53 sequence-specific DNA binding. Proc Natl Acad Sci USA 95: 6079–6084.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nicholls CD, McLure KG, Shields MA, Lee PW . (2002). Biogenesis of p53 involves cotranslational dimerization of monomers and posttranslational dimerization of dimers. Implications on the dominant negative effect. J Biol Chem 277: 12937–12945.

    Article  CAS  PubMed  Google Scholar 

  • Nikolova PV, Henckel J, Lane DP, Fersht AR . (1998). Semirational design of active tumor suppressor p53 DNA binding domain with enhanced stability. Proc Natl Acad Sci USA 95: 14675–14680.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nikolova PV, Wong KB, DeDecker B, Henckel J, Fersht AR . (2000). Mechanism of rescue of common p53 cancer mutations by second-site suppressor mutations. EMBO J 19: 370–378.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olivier M, Eeles R, Hollstein M, Khan MA, Harris CC, Hainaut P . (2002). The IARC TP53 database: new online mutation analysis and recommendations to users. Hum Mutat 19: 607–614.

    Article  CAS  PubMed  Google Scholar 

  • Olivier M, Goldgar DE, Sodha N, Ohgaki H, Kleihues P, Hainaut P et al. (2003). Li-Fraumeni and related syndromes: correlation between tumor type, family structure, and TP53 genotype. Cancer Res 63: 6643–6650.

    CAS  PubMed  Google Scholar 

  • Olivier M, Langerod A, Carrieri P, Bergh J, Klaar S, Eyfjord J et al. (2006). The clinical value of somatic TP53 gene mutations in 1,794 patients with breast cancer. Clin Cancer Res 12: 1157–1167.

    Article  CAS  PubMed  Google Scholar 

  • Pan Y, Ma B, Venkataraghavan RB, Levine AJ, Nussinov R . (2005). In the quest for stable rescuing mutants of p53: computational mutagenesis of flexible loop L1. Biochemistry 44: 1423–1432.

    Article  CAS  PubMed  Google Scholar 

  • Pan Y, Ma B, Levine AJ, Nussinov R . (2006). Comparison of the human and worm p53 structures suggests a way for enhancing stability. Biochemistry 45: 3925–3933.

    Article  CAS  PubMed  Google Scholar 

  • Petitjean A, Achatz MIW, Borresen-Dale AL, Hainaut P, Olivier M . (2007). TP53 mutations in human cancers: functional selection and impact on cancer prognosis and outcomes Oncogene. In press.

  • Poon A, Davis BH, Chao L . (2005). The coupon collector and the suppressor mutation: estimating the number of compensatory mutations by maximum likelihood. Genetics 170: 1323–1332.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poteete AR, Sun DP, Nicholson H, Matthews BW . (1991). Second-site revertants of an inactive T4 lysozyme mutant restore activity by restructuring the active site cleft. Biochemistry 30: 1425–1432.

    Article  CAS  PubMed  Google Scholar 

  • Prives C, Manley JL . (2001). Why is p53 acetylated? Cell 107: 815–818.

    Article  CAS  PubMed  Google Scholar 

  • Qian H, Wang T, Naumovski L, Lopez CD, Brachmann RK . (2002). Groups of p53 target genes involved in specific p53 downstream effects cluster into different classes of DNA binding sites. Oncogene 21: 7901–7911.

    Article  CAS  PubMed  Google Scholar 

  • Resnick MA, Inga A . (2003). Functional mutants of the sequence-specific transcription factor p53 and implications for master genes of diversity. Proc Natl Acad Sci USA 100: 9934–9939.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rippin TM, Freund SM, Veprintsev DB, Fersht AR . (2002). Recognition of DNA by p53 core domain and location of intermolecular contacts of cooperative binding. J Mol Biol 319: 351–358.

    Article  CAS  PubMed  Google Scholar 

  • Rosal R, Pincus MR, Brandt-Rauf PW, Fine RL, Michl J, Wang H . (2004). NMR solution structure of a peptide from the mdm-2 binding domain of the p53 protein that is selectively cytotoxic to cancer cells. Biochemistry 43: 1854–1861.

    Article  CAS  PubMed  Google Scholar 

  • Rustandi RR, Baldisseri DM, Weber DJ . (2000). Structure of the negative regulatory domain of p53 bound to S100B(betabeta). Nat Struct Biol 7: 570–574.

    Article  CAS  PubMed  Google Scholar 

  • Ryan KM, Vousden KH . (1998). Characterization of structural p53 mutants which show selective defects in apoptosis but not cell cycle arrest. Mol Cell Biol 18: 3692–3698.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakaguchi K, Sakamoto H, Xie D, Erickson JW, Lewis MS, Anderson CW et al. (1997). Effect of phosphorylation on tetramerization of the tumor suppressor protein p53. J Protein Chem 16: 553–556.

    Article  CAS  PubMed  Google Scholar 

  • Saller E, Tom E, Brunori M, Otter M, Estreicher A, Mack DH et al. (1999). Increased apoptosis induction by 121F mutant p53. EMBO J 18: 4424–4437.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Serrano L, Kellis Jr JT, Cann P, Matouschek A, Fersht AR . (1992). The folding of an enzyme. II. Substructure of barnase and the contribution of different interactions to protein stability. J Mol Biol 224: 783–804.

    Article  CAS  PubMed  Google Scholar 

  • Shiraishi K, Kato S, Han SY, Liu W, Otsuka K, Sakayori M et al. (2004). Isolation of temperature-sensitive p53 mutations from a comprehensive missense mutation library. J Biol Chem 279: 348–355.

    Article  CAS  PubMed  Google Scholar 

  • Sigal A, Rotter V . (2000). Oncogenic mutations of the p53 tumor suppressor: the demons of the guardian of the genome. Cancer Res 60: 6788–6793.

    CAS  PubMed  Google Scholar 

  • Stephen CW, Lane DP . (1992). Mutant conformation of p53. Precise epitope mapping using a filamentous phage epitope library. J Mol Biol 225: 577–583.

    Article  CAS  PubMed  Google Scholar 

  • Sujatha S, Ishihama A, Chatterji D . (2001). Functional complementation between mutations at two distant positions in Escherichia coli RNA polymerase as revealed by second-site suppression. Mol Gen Genet 264: 531–538.

    Article  CAS  PubMed  Google Scholar 

  • Thut CJ, Chen JL, Klemm R, Tjian R . (1995). p53 transcriptional activation mediated by coactivators TAFII40 and TAFII60. Science 267: 100–104.

    Article  CAS  PubMed  Google Scholar 

  • Tidow H, Veprintsev DB, Freund SM, Fersht AR . (2006). Effects of oncogenic mutations and DNA response elements on the binding of p53 to p53 binding protein 2 (53BP2). J Biol Chem 281: 32526–32533.

    Article  CAS  PubMed  Google Scholar 

  • Trigiante G, Lu X . (2006). ASPP [corrected] and cancer. Nat Rev Cancer 6: 217–226.

    Article  CAS  PubMed  Google Scholar 

  • Veprintsev DB, Freund SM, Andreeva A, Rutledge SE, Tidow H, Canadillas JM et al. (2006). Core domain interactions in full-length p53 in solution. Proc Natl Acad Sci USA 103: 2115–2119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walker KK, Levine AJ . (1996). Identification of a novel p53 functional domain that is necessary for efficient growth suppression. Proc Natl Acad Sci USA 93: 15335–15340.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang PL, Sait F, Winter G . (2001). The ‘wildtype’ conformation of p53: epitope mapping using hybrid proteins. Oncogene 20: 2318–2324.

    Article  CAS  PubMed  Google Scholar 

  • Weinberg RL, Freund SM, Veprintsev DB, Bycroft M, Fersht AR . (2004a). Regulation of DNA binding of p53 by its C-terminal domain. J Mol Biol 342: 801–811.

    Article  CAS  PubMed  Google Scholar 

  • Weinberg RL, Veprintsev DB, Fersht AR . (2004b). Cooperative binding of tetrameric p53 to DNA. J Mol Biol 341: 1145–1159.

    Article  CAS  PubMed  Google Scholar 

  • Weinberg RL, Veprintsev DB, Bycroft M, Fersht AR . (2005). Comparative binding of p53 to its promoter and DNA recognition elements. J Mol Biol 348: 589–596.

    Article  CAS  PubMed  Google Scholar 

  • Wieczorek AM, Waterman JL, Waterman MJ, Halazonetis TD . (1996). Structure-based rescue of common tumor-derived p53 mutants. Nat Med 2: 1143–1146.

    Article  CAS  PubMed  Google Scholar 

  • Wiman KG . (2006). Strategies for therapeutic targeting of the p53 pathway in cancer. Cell Death Differ 13: 921–926.

    Article  CAS  PubMed  Google Scholar 

  • Wong KB, DeDecker BS, Freund SM, Proctor MR, Bycroft M, Fersht AR . (1999). Hot-spot mutants of p53 core domain evince characteristic local structural changes. Proc Natl Acad Sci USA 96: 8438–8442.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wray JW, Baase WA, Lindstrom JD, Weaver LH, Poteete AR, Matthews BW . (1999). Structural analysis of a non-contiguous second-site revertant in T4 lysozyme shows that increasing the rigidity of a protein can enhance its stability. J Mol Biol 292: 1111–1120.

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Baase WA, Baldwin E, Matthews BW . (1998). The response of T4 lysozyme to large-to-small substitutions within the core and its relation to the hydrophobic effect. Protein Sci 7: 158–177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yip YL, Zoete V, Scheib H, Michielin O . (2006). Structural assessment of single amino acid mutations: application to TP53 function. Hum Mutat 27: 926–937.

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Guo XY, Hu GY, Liu WB, Shay JW, Deisseroth AB . (1994). A temperature-sensitive mutant of human p53. EMBO J 13: 2535–2544.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao K, Chai X, Johnston K, Clements A, Marmorstein R . (2001). Crystal structure of the mouse p53 core DNA-binding domain at 2.7 A resolution. J Biol Chem 276: 12120–12127.

    Article  CAS  PubMed  Google Scholar 

  • Zupnick A, Prives C . (2006). Mutational analysis of the p53 core domain L1 loop. J Biol Chem 281: 20464–20473.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A C Joerger or A R Fersht.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Joerger, A., Fersht, A. Structure–function–rescue: the diverse nature of common p53 cancer mutants. Oncogene 26, 2226–2242 (2007). https://doi.org/10.1038/sj.onc.1210291

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210291

Keywords

This article is cited by

Search

Quick links