Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Deregulation of c-Myc in primary effusion lymphoma by Kaposi's sarcoma herpesvirus latency-associated nuclear antigen

Abstract

Primary effusion lymphoma (PEL) is a rare subtype of non-Hodgkin's lymphoma, which is associated with infection by Kaposi's sarcoma herpesvirus (KSHV)/human herpesvirus-8. The c-Myc transcription factor plays an important role in cellular proliferation, differentiation and apoptosis. Lymphomas frequently have deregulated c-Myc expression owing to chromosomal translocations, amplifications or abnormal stabilization. However, no structural abnormalities were found in the c-myc oncogene in PEL. Given that c-Myc is often involved in lymphomagenesis, we hypothesized that it is deregulated in PEL. We report that PEL cells have abnormally stable c-Myc protein. The turnover of c-Myc protein is stringently regulated by post-transcriptional modifications, including phosphorylation of c-Myc threonine 58 (T58) by glycogen synthase kinase-3β (GSK-3β). Our data show that the impaired c-Myc degradation in PEL cells is associated with a significant underphosphorylation of c-Myc T58. The KSHV latency-associated nuclear antigen (LANA) is responsible for this deregulation. Overexpression of LANA in human embryonic kidney 293 or peripheral blood B cells leads to post-transcriptional deregulation of c-Myc protein. Conversely, when LANA is eliminated from PEL cells using RNA interference, GSK-3β-mediated c-Myc T58 phosphorylation is restored. The presence of c-Myc and LANA in GSK-3β-containing complexes in PEL cells further confirms the significance of these interactions in naturally KSHV-infected cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • An FQ, Compitello N, Horwitz E, Sramkoski M, Knudsen ES, Renne R . (2005). The latency-associated nuclear antigen of Kaposi's sarcoma-associated herpesvirus modulates cellular gene expression and protects lymphoid cells from p16 INK4A-induced cell cycle arrest. J Biol Chem 280: 3862–3874.

    Article  CAS  PubMed  Google Scholar 

  • An J, Sun Y, Rettig MB . (2004). Transcriptional coactivation of c-Jun by the KSHV-encoded LANA. Blood 103: 222–228.

    Article  CAS  PubMed  Google Scholar 

  • Arvanitakis L, Mesri EA, Nador R, Said JW, Asch AS, Knowles DM et al. (1996). Establishment and characterization of a primary effusion (body cavity-based) lymphoma cell line (BC-3) harboring Kaposi’s sarcoma-associated herpesvirus (KSHV/HHV-8) in the absence of Epstin–Barr virus. Blood 88: 2648–2654.

    CAS  PubMed  Google Scholar 

  • Ballestas ME, Chatis PA, Kaye KM . (1999). Efficient persistence of extrachromosomal KSHV DNA mediated by latency-associated nuclear antigen. Science 284: 641–644.

    Article  CAS  PubMed  Google Scholar 

  • Bhatia K, Huppi K, Spangler G, Siwarski D, Iyer R, Magrath I . (1993). Point mutations in the c-Myc transactivation domain are common in Burkitt’s lymphoma and mouse plasmacytomas. Nat Genet 5: 56–61.

    Article  CAS  PubMed  Google Scholar 

  • Bijur GN, Jope RS . (2003). Glycogen synthase kinase-3 beta is highly activated in nuclei and mitochondria. Neuroreport 14: 2415–2419.

    Article  CAS  PubMed  Google Scholar 

  • Cadigan KM, Nusse R . (1997). Wnt signaling: a common theme in animal development. Genes Dev 11: 3286–3305.

    Article  CAS  PubMed  Google Scholar 

  • Cesarman E, Chang Y, Moore PS, Said JW, Knowles DM . (1995a). Kaposi’s sarcoma-associated herpesvirus-like DNA sequences in AIDS-related body cavity-based lymphomas. N Engl J Med 332: 1186–1191.

    Article  CAS  PubMed  Google Scholar 

  • Cesarman E, Dalla-Favera R, Bentley D, Groudine M . (1987). Mutations in the first exon are associated with altered transcription of c-myc in Burkitt lymphoma. Science 238: 1272–1275.

    Article  CAS  PubMed  Google Scholar 

  • Cesarman E, Moore PS, Rao P, Inghirami G, Knowles DM, Chang Y . (1995b). In vitro establishment and characterization of two acquired immunodeficiency syndrome-related lymphoma cell lines (BC-1 and BC-2) containing Kaposi's sarcoma-associated herpesvirus-like (KSHV) DNA sequences. Blood 86: 2708–2714.

    CAS  PubMed  Google Scholar 

  • Chang DW, Claassen GF, Hann SR, Cole MD . (2000). The c-Myc transactivation domain is a direct modulator of apoptotic versus proliferative signals. Mol Cell Biol 20: 4309–4319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conzen SD, Gottlob K, Kandel ES, Khanduri P, Wagner AJ, O’Leary M et al. (2000). Induction of cell cycle progression and acceleration of apoptosis are two separable functions of c-Myc: transrepression correlates with acceleration of apoptosis. Mol Cell Biol 20: 6008–6018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dalla-Favera R, Bregni M, Erickson M, Patterson D, Gallo RC, Croce CM . (1982). Human c-myc oncogene is located on the region of chromosome 8 that is translocated in Burkitt lymphoma cells. Proc Natl Acad Sci 79: 7824–7827.

    Article  CAS  PubMed  Google Scholar 

  • Dominguez-Sola D, Dalla-Favera R . (2004). PINning down the c-Myc oncoprotein. Nat Cell Biol 6: 288–289.

    Article  CAS  PubMed  Google Scholar 

  • Fakhari FD, Jeong JH, Kanan Y, Dittmer DP . (2006). The latency-associated nuclear antigen of Kaposi sarcoma-associated herpesvirus induces B cell hyperplasia and lymphoma. J Clin Invest 116: 735–742.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan W, Bubman D, Chadburn A, Harrington Jr WJ, Cesarman E, Knowles DM . (2005). Distinct subsets of primary effusion lymphoma can be identified based on their cellular gene expression profile and viral association. J Virol 79: 1244–1251.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Friborg Jr J, Kong W, Hottiger MO, Nabel GJ . (1999). p53 inhibition by the LANA protein of KSHV protects against cell death. Nature 402: 889–894.

    Article  CAS  PubMed  Google Scholar 

  • Fujimuro M, Wu FY, ApRhys C, Kajumbula H, Young DB, Hayward GS et al. (2003). A novel viral mechanism for dysregulation of beta-catenin in Kaposi's sarcoma-associated herpesvirus latency. Nat Med 9: 300–306.

    Article  CAS  PubMed  Google Scholar 

  • Gaidano G, Pasqualucci L, Capello D, Berra E, Deambrogi C, Rossi D et al. (2003). Aberrant somatic hypermutation in multiple subtypes of AIDS-associated non-Hodgkin lymphoma. Blood 102: 1833–1841.

    Article  CAS  PubMed  Google Scholar 

  • Gaidano G, Pastore C, Gloghini A, Volpe G, Ghia P, Saglio G et al. (1996). AIDS-related non-Hodgkins lymphomas: molecular genetics, viral infection and cytokine deregulation. Acta Haematol 95: 193–198.

    Article  CAS  PubMed  Google Scholar 

  • Grandori C, Eisenman RN . (1997). Myc target genes. Trends Biochem Sci 22: 177–181.

    Article  CAS  PubMed  Google Scholar 

  • Gregory MA, Hann SR . (2000). c-Myc proteolysis by the ubiquitin-proteasome pathway: stabilization of c-Myc in Burkitt's lymphoma cells. Mol Cell Biol 20: 2423–2435.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gregory MA, Qi Y, Hann SR . (2003). Phosphorylation by glycogen synthase kinase-3 controls c-myc proteolysis and subnuclear localization. J Biol Chem 278: 51606–51612.

    Article  CAS  PubMed  Google Scholar 

  • Hann SR, Eisenman RN . (1984). Proteins encoded by the human c-myc oncogene: differential expression in neoplastic cells. Mol Cell Biol 4: 2486–2497.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hayward SD, Liu J, Fujimuro M . (2006). Notch and Wnt signaling: mimicry and manipulation by gamma herpesviruses. Sci STKE 2006 335: re4.

    Google Scholar 

  • Henriksson M, Luscher B . (1996). Proteins of the Myc network: essential regulators of cell growth and differentiation. Adv Cancer Res 68: 109–182.

    Article  CAS  PubMed  Google Scholar 

  • Henriksson M, Bakardjiev A, Klein G, Luscher B . (1993). Phosphorylation sites mapping in the N-terminal domain of c-myc modulate its transforming potential. Oncogene 8: 3199–3209.

    CAS  PubMed  Google Scholar 

  • Horenstein MG, Nador RG, Chadburn A, Hyjek EM, Inghirami G, Knowles DM et al. (1997). Epstein–Barr virus latent gene expression in primary effusion lymphomas containing Kaposi’s sarcoma-associated herpesvirus human herpesvirus-8. Blood 90: 1186–1191.

    CAS  PubMed  Google Scholar 

  • Jope RS, Johnson GV . (2004). The glamour and gloom of glycogen synthase kinase-3. Trends Biochem Sci 29: 95–102.

    Article  CAS  PubMed  Google Scholar 

  • King MW, Roberts JM, Eisenman RN . (1986). Expression of the c-myc proto-oncogene during development of Xenopus laevis. Mol Cell Biol 6: 4499–4508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knight JS, Cotter MA, Robertson ES . (2001). The latency-associated nuclear antigen of Kaposi's sarcoma-associated herpesvirus transactivates the telomerase reverse transcriptase promoter. J Biol Chem 276: 22971–22978.

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD . (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25: 402–408.

    Article  CAS  Google Scholar 

  • Moore PS, Chang Y . (1995). Detection of herpesvirus-like DNA sequences in Kaposi’s sarcoma lesions from persons with and without HIV infection. N Engl J Med 332: 1181–1185.

    Article  CAS  PubMed  Google Scholar 

  • Nador RG, Cesarman E, Chadburn A, Dawson DB, Ansari MQ, Said J et al. (1996). Primary effusion lymphoma: a distinct clinicopathologic entity associated with the Kaposi's sarcoma-associated herpesvirus. Blood 88: 645–656.

    CAS  PubMed  Google Scholar 

  • Papas TS, Lautenberger JA . (1985). Sequence curiosity in v-myc oncogene. Nature 318: 237.

    Article  CAS  PubMed  Google Scholar 

  • Pelengaris S, Khan M . (2003). The many faces of c-MYC. Arch Biochem Biophys 416: 129–136.

    Article  CAS  PubMed  Google Scholar 

  • Pelengaris S, Khan M, Evan G . (2002a). c-MYC: more than just a matter of life and death. Nat Rev Cancer 2: 764–776.

    Article  CAS  PubMed  Google Scholar 

  • Pelengaris S, Khan M, Evan GI . (2002b). Suppression of Myc-induced apoptosis in beta cells exposes multiple oncogenic properties of Myc and triggers carcinogenic progression. Cell 109: 321–334.

    Article  CAS  PubMed  Google Scholar 

  • Polakis P . (2000). Wnt signaling and cancer. Genes Dev 14: 1837–1851.

    CAS  PubMed  Google Scholar 

  • Pulverer BJ, Fisher C, Vousden K, Littlewood T, Evan G, Woodgett JR . (1994). Site-specific modulation of c-Myc cotransformation by residues phosphorylated in vivo. Oncogene 9: 59–70.

    CAS  PubMed  Google Scholar 

  • Rabbitts TH, Hamlyn PH, Baer R . (1983). Altered nucleotide sequences of a translocated c-myc gene in Burkitt lymphoma. Nature 306: 760–765.

    Article  CAS  PubMed  Google Scholar 

  • Radkov SA, Kellam P, Boshoff C . (2000). The latent nuclear antigen of kaposi sarcoma-associated herpesvirus targets the retinoblastoma-E2F pathway and with the oncogene hras transforms primary rat cells. Nat Med 6: 1121–1127.

    Article  CAS  PubMed  Google Scholar 

  • Rao PH, Houldsworth J, Dyomina K, Parsa NZ, Cigudosa JC, Louie DC et al. (1998). Chromosomal and gene amplification in diffuse large B-cell lymphoma. Blood 92: 234–240.

    CAS  PubMed  Google Scholar 

  • Renne R, Barry C, Dittmer D, Compitello N, Brown PO, Ganem D . (2001). Modulation of cellular and viral gene expression by the latency- associated nuclear antigen of Kaposi’s sarcoma-associated herpesvirus. J Virol 75: 458–468.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Renne R, Zhong W, Herndier B, McGrath M, Abbey N, Kedes D et al. (1996). Lytic growth of Kaposi's sarcoma-associated herpesvirus (human herpesvirus 8) in culture. Nat Med 2: 342–346.

    Article  CAS  PubMed  Google Scholar 

  • Sears R, Nuckolls F, Haura E, Taya Y, Tamai K, Nevins JR . (2000). Multiple Ras-dependent phosphorylation pathways regulate Myc protein stability. Genes Dev 14: 2501–2514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soulier J, Grollet L, Oksenhendler E, Cacoub P, Cazals-Hatem D, Babinet P et al. (1995). Kaposi’s sarcoma-associated herpesvirus-like DNA sequences in multicentric Castleman's disease. Blood 86: 1275–1280.

    Google Scholar 

  • Taub R, Kirsch I, Morton C, Lenoir G, Swan D, Tronick S et al. (1982). Translocation of the c-myc gene into the immunoglobulin heavy chain locus in human Burkitt lymphoma and murine plasmacytoma cells. Proc Natl Acad Sci USA 79: 7837–7841.

    Article  CAS  PubMed  Google Scholar 

  • Yano T, Sander CA, Clark HM, Dolezal MV, Jaffe ES, Raffeld M . (1993). Clustered mutations in the second exon of the MYC gene in sporadic Burkitt’s lymphoma. Oncogene 8: 2741–2748.

    CAS  PubMed  Google Scholar 

  • Yeh E, Cunningham M, Arnold H, Chasse D, Monteith T, Ivaldi G et al. (2004). A signalling pathway controlling c-Myc degradation that impacts oncogenic transformation of human cells. Nat Cell Biol 6: 308–318.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Rosalie Sears for invaluable advice about the details of c-Myc experiments. This work was supported by NIH Grant R01 CA068939, by a Leukemia and Lymphoma Society Translational Research Program Grant and by an Irma T Hirschl/Monique Weill-Caulier Career Scientist Award to EC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E Cesarman.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bubman, D., Guasparri, I. & Cesarman, E. Deregulation of c-Myc in primary effusion lymphoma by Kaposi's sarcoma herpesvirus latency-associated nuclear antigen. Oncogene 26, 4979–4986 (2007). https://doi.org/10.1038/sj.onc.1210299

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210299

Keywords

This article is cited by

Search

Quick links