Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Targeting the function of the HER2 oncogene in human cancer therapeutics

Abstract

The year 2007 marks exactly two decades since human epidermal growth factor receptor-2 (HER2) was functionally implicated in the pathogenesis of human breast cancer (Slamon et al., 1987). This finding established the HER2 oncogene hypothesis for the development of some human cancers. An abundance of experimental evidence compiled over the past two decades now solidly supports the HER2 oncogene hypothesis. A direct consequence of this hypothesis was the promise that inhibitors of oncogenic HER2 would be highly effective treatments for HER2-driven cancers. This treatment hypothesis has led to the development and widespread use of anti-HER2 antibodies (trastuzumab) in clinical management resulting in significantly improved clinical antitumor efficacies that have transformed the clinical practice of oncology. In the shadows of this irrefutable clinical success, scientific studies have not yet been able to mechanistically validate that trastuzumab inhibits oncogenic HER2 function and it remains possible that the current clinical advances are a consequence of the oncogene hypothesis, but not a translation of it. These looming scientific uncertainties suggest that the full promise of the treatment hypothesis may not yet have been realized. The coming decade will see a second generation of HER2-targeting agents brought into clinical testing and a renewed attempt to treat HER2-driven cancers through the inactivation of HER2. Here, I review the development of treatments that target HER2 in the context of the HER2 oncogene hypothesis, and where we stand with regards to the clinical translation of the HER2 oncogene hypothesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  • Adams CW, Allison DE, Flagella K, Presta L, Clarke J, Dybdal N et al. (2006). Humanization of a recombinant monoclonal antibody to produce a therapeutic HER dimerization inhibitor, pertuzumab. Cancer Immunol Immunother 55: 717–727.

    Article  CAS  Google Scholar 

  • Agus DB, Akita RW, Fox WD, Lewis GD, Higgins B, Pisacane PI et al. (2002). Targeting ligand-activated ErbB2 signaling inhibits breast and prostate tumor growth. Cancer Cell 2: 127–137.

    Article  CAS  Google Scholar 

  • Akita RW, Sliwkowski MX . (2003). Preclinical studies with Erlotinib (Tarceva). Semin Oncol 30 (3 Suppl 7): 15–24.

    CAS  Google Scholar 

  • Albain K, Elledge R, Gradishar WJ, Hayes DF, Rowinsky EK, Hudis C et al. (2002). Open-label phase II multicenter trial of ZD1839 (‘Iressa’) in patients with advanced breast cancer. Breast Cancer Res Treat 76: S33 #20.

    Google Scholar 

  • Arnould L, Gelly M, Penault-Llorca F, Benoit L, Bonnetain F, Migeon C et al. (2006). Trastuzumab-based treatment of HER2-positive breast cancer: an antibody-dependent cellular cytotoxicity mechanism? Br J Cancer 94: 259–267.

    Article  CAS  Google Scholar 

  • Austin CD, De Maziere AM, Pisacane PI, van Dijk SM, Eigenbrot C, Sliwkowski MX et al. (2004). Endocytosis and sorting of ErbB2 and the site of action of cancer therapeutics trastuzumab and geldanamycin. Mol Biol Cell 15: 5268–5282.

    CAS  Google Scholar 

  • Baasner S, von MH, Klenner T, Hilgard P, Beckers T . (1996). Reversible tumorigenesis in mice by conditional expression of the HER2/c-erbB2 receptor tyrosine kinase. Oncogene 13: 901–911.

    CAS  Google Scholar 

  • Bacus SS, Stancovski I, Huberman E, Chin D, Hurwitz E, Mills GB et al. (1992). Tumor-inhibitory monoclonal antibodies to the HER-2/Neu receptor induce differentiation of human breast cancer cells. Cancer Res 52: 2580–2589.

    CAS  Google Scholar 

  • Baker AF, Dragovich T, Ihle NT, Williams R, Fenoglio-Preiser C, Powis G . (2005). Stability of phosphoprotein as a biological marker of tumor signaling. Clin Cancer Res 11: 4338–4340.

    CAS  Google Scholar 

  • Barbacci EG, Pustilnik LR, Rossi AM, Emerson E, Miller PE, Boscoe BP et al. (2003). The biological and biochemical effects of CP-654577, a selective erbB2 kinase inhibitor, on human breast cancer cells. Cancer Res 63: 4450–4459.

    CAS  Google Scholar 

  • Baselga J, Albanell J, Ruiz A, Lluch A, Gascon P, Guillem V et al. (2005). Phase II and tumor pharmacodynamic study of gefitinib in patients with advanced breast cancer. J Clin Oncol 23: 5323–5333.

    CAS  Google Scholar 

  • Baselga J, Cameron D, Miles D, Verma S, Climent M, Ross G et al. (2007). Objective response rate in a phase II trial of pertuzumab (P), a HER2 dimerization inhibiting monoclonal antibody, in conjunction with trastuzumab (T) in patients (pts) with HER2-positive metastatic breast cancer (MBC) which has progressed during treatment with T. Proc Am Soc Clin Onc 25: #1004.

  • Baselga J, Norton L, Albanell J, Kim YM, Mendelsohn J . (1998). Recombinant humanized anti-HER2 antibody (Herceptin) enhances the antitumor activity of paclitaxel and doxorubicin against HER2/neu overexpressing human breast cancer xenografts. Cancer Res 58: 2825–2831.

    CAS  Google Scholar 

  • Baselga J, Tripathy D, Mendelsohn J, Baughman S, Benz CC, Dantis L et al. (1996). Phase II study of weekly intravenous recombinant humanized anti-p185HER2 monoclonal antibody in patients with HER2/neu-overexpressing metastatic breast cancer. J Clin Onc 14: 737–744.

    CAS  Google Scholar 

  • Beerli RR, Wels W, Hynes NE . (1994). Intracellular expression of single chain antibodies reverts ErbB-2 transformation. J Biol Chem 269: 23931–23936.

    CAS  Google Scholar 

  • Belimezi MM, Papanastassiou D, Merkouri E, Baxevanis CN, Mamalaki A . (2006). Growth inhibition of breast cancer cell lines overexpressing Her2/neu by a novel internalized fully human Fab antibody fragment. Cancer Immunol Immunother 55: 1091–1099.

    CAS  Google Scholar 

  • Bianco R, Shin I, Ritter CA, Yakes FM, Basso A, Rosen N et al. (2003). Loss of PTEN/MMAC1/TEP in EGF receptor-expressing tumor cells counteracts the antitumor action of EGFR tyrosine kinase inhibitors. Oncogene 22: 2812–2822.

    CAS  Google Scholar 

  • Blackwell K, Kaplan EH, Franco SX, Marcom PK, Maleski MJ, Sorenson MS et al. (2004). A phase II, open-label, multicenter study of GW572016 in patients with trastuzumab-refractory metastatic breast cancer. Proc Amer Soc Clin Onc 22: # 3006.

    Google Scholar 

  • Blackwell KL, Burstein H, Pegram M, Storniolo A, Salazar VM, Maleski JE et al. (2006). Determining Relevant Biomarkers from Tissue and Serum that May Predict Response to Single Agent Lapatinib in Trastuzumab Refractory Metastatic Breast Cancer. Proc Amer Soc Clin Onc 23: #3004.

  • Bookman MA, Darcy KM, Clarke-Pearson D, Boothby RA, Horowitz IR . (2003). Evaluation of monoclonal humanized anti-HER2 antibody, trastuzumab, in patients with recurrent or refractory ovarian or primary peritoneal carcinoma with overexpression of HER2: a phase II trial of the Gynecologic Oncology Group. J Clin Oncol 21: 283–290.

    CAS  Google Scholar 

  • Bose S, Crane A, Hibshoosh H, Mansukhani M, Sandweis L, Parsons R . (2002). Reduced expression of PTEN correlates with breast cancer progression. Hum Pathol 33: 405–409.

    CAS  Google Scholar 

  • Brand FX, Ravanel N, Gauchez AS, Pasquier D, Payan R, Fagret D et al. (2006). Prospect for anti-HER2 receptor therapy in breast cancer. Anticancer Res 26: 463–470.

    CAS  Google Scholar 

  • Brandt R, Wong AM, Hynes NE . (2001). Mammary glands reconstituted with Neu/ErbB2 transformed HC11 cells provide a novel orthotopic tumor model for testing anti-cancer agents. Oncogene 20: 5459–5465.

    CAS  Google Scholar 

  • Burstein H, Storniolo A, Franco S, Salazar VM, Sorenson MS, Stein SH . (2004). A phase II, open-label, multicenter study of lapatinib in two cohorts of patients with advanced or metastatic breast cancer who have progressed while receiving trastuzumab-containing regimens. Annals of Oncol 15 (Suppl 3): 27, (abstract 1040).

    Google Scholar 

  • Burstein HJ, Harris LN, Marcom PK, Lambert-Falls R, Havlin K, Overmoyer B et al. (2003). Trastuzumab and vinorelbine as first-line therapy for HER2-overexpressing metastatic breast cancer: multicenter phase II trial with clinical outcomes, analysis of serum tumor markers as predictive factors, and cardiac surveillance algorithm. J Clin Oncol 21: 2889–2895.

    CAS  Google Scholar 

  • Campos S, Hamid O, Seiden MV, Oza A, Plante M, Potkul RK et al. (2005). Multicenter, randomized phase II trial of oral CI-1033 for previously treated advanced ovarian cancer. J Clin Oncol 23: 5597–5604.

    CAS  Google Scholar 

  • Carson WE, Parihar R, Lindemann MJ, Personeni N, Dierksheide J, Meropol NJ et al. (2001). Interleukin-2 enhances the natural killer cell response to Herceptin-coated Her2/neu-positive breast cancer cells. Eur J Immunol 31: 3016–3025.

    CAS  Google Scholar 

  • Carter P, Presta L, Gorman CM, Ridgway JB, Henner D, Wong WL et al. (1992). Humanization of an anti-p185HER2 antibody for human cancer therapy. Proc Natl Acad Sci USA 89: 4285–4289.

    CAS  Google Scholar 

  • Chazin VR, Kaleko M, Miller AD, Slamon DJ . (1992). Transformation mediated by the human HER-2 gene independent of the epidermal growth factor receptor. Oncogene 7: 1859–1866.

    CAS  Google Scholar 

  • Chen JS, Lan K, Hung MC . (2003). Strategies to target HER2/neu overexpression for cancer therapy. Drug Resist Updat 6: 129–136.

    CAS  Google Scholar 

  • Cho HS, Mason K, Ramyar KX, Stanley AM, Gabelli SB, Denney Jr DW et al. (2003). Structure of the extracellular region of HER2 alone and in complex with the Herceptin Fab. Nature 421: 756–760.

    CAS  Google Scholar 

  • Choudhury A, Charo J, Parapuram SK, Hunt RC, Hunt DM, Seliger B et al. (2004). Small interfering RNA (siRNA) inhibits the expression of the Her2/neu gene, upregulates HLA class I and induces apoptosis of Her2/neu positive tumor cell lines. Int J Cancer 108: 71–77.

    CAS  Google Scholar 

  • Christianson TA, Doherty JK, Lin YJ, Ramsey EE, Holmes R, Keenan EJ et al. (1998). NH2-terminally truncated HER-2/neu protein: relationship with shedding of the extracellular domain and with prognostic factors in breast cancer. Cancer Res 58: 5123–5129.

    CAS  Google Scholar 

  • Citri A, Alroy I, Lavi S, Rubin C, Xu W, Grammatikakis N et al. (2002). Drug-induced ubiquitylation and degradation of ErbB receptor tyrosine kinases: implications for cancer therapy. EMBO J 21: 2407–2417.

    CAS  Google Scholar 

  • Clynes RA, Towers TL, Presta LG, Ravetch JV . (2000). Inhibitory Fc receptors modulate in vivo cytoxicity against tumor targets. [see comment]. Nature Med 6: 443–446.

    CAS  Google Scholar 

  • Colomer R, Lupu R, Bacus SS, Gelmann EP . (1994). erbB-2 antisense oligonucleotides inhibit the proliferation of breast carcinoma cells with erbB-2 oncogene amplification. Br J Cancer 70: 819–825.

    CAS  Google Scholar 

  • Cooley S, Burns LJ, Repka T, Miller JS . (1999). Natural killer cell cytotoxicity of breast cancer targets is enhanced by two distinct mechanisms of antibody-dependent cellular cytotoxicity against LFA-3 and HER2/neu. Exp Hematol 27: 1533–1541.

    CAS  Google Scholar 

  • Cortes JE, Baselga J, Kellokumpu-Lehtinen PL, Bianchi G, Cameron D, Miles D et al. (2005). Open label, randomized, phase II study of pertuzumab (P) in patients (pts) with metastatic breast cancer (MBC) with low expression of HER2. Proc Amer Soc Clin Onc 23: #3068.

  • Cuello M, Ettenberg SA, Clark AS, Keane MM, Posner RH, Nau MM et al. (2001). Down-regulation of the erbB-2 receptor by trastuzumab (herceptin) enhances tumor necrosis factor-related apoptosis-inducing ligand-mediated apoptosis in breast and ovarian cancer cell lines that overexpress erbB-2. Cancer Res 61: 4892–4900.

    CAS  Google Scholar 

  • De Lorenzo C, Cozzolino R, Carpentieri A, Pucci P, Laccetti P, D’Alessio G . (2005). Biological properties of a human compact anti-ErbB2 antibody. Carcinogenesis 26: 1890–1895.

    CAS  Google Scholar 

  • Deshane J, Grim J, Loechel S, Siegal GP, Alvarez RD, Curiel DT . (1996). Intracellular antibody against erbB-2 mediates targeted tumor cell eradication by apoptosis. Cancer Gene Ther 3: 89–98.

    CAS  Google Scholar 

  • Diermeier S, Horvath G, Knuechel-Clarke R, Hofstaedter F, Szollosi J, Brockhoff G . (2005). Epidermal growth factor receptor coexpression modulates susceptibility to Herceptin in HER2/neu overexpressing breast cancer cells via specific erbB-receptor interaction and activation. Exp Cell Res 304: 604–619.

    CAS  Google Scholar 

  • Discafani CM, Carroll ML, Floyd Jr MB, Hollander IJ, Husain Z, Johnson BD et al. (1999). Irreversible inhibition of epidermal growth factor receptor tyrosine kinase with in vivo activity by N-[4-[(3-bromophenyl)amino]-6-quinazolinyl]-2-butynamide (CL-387,785). Biochem Pharmacol 57: 917–925.

    CAS  Google Scholar 

  • Drebin JA, Link VC, Greene MI . (1988). Monoclonal antibodies reactive with distinct domains of the neu oncogene-encoded p185 molecule exert synergistic anti-tumor effects in vivo. Oncogene 2: 273–277.

    CAS  Google Scholar 

  • Drebin JA, Link VC, Stern DF, Weinberg RA, Greene MI . (1985). Down-modulation of an oncogene protein product and reversion of the transformed phenotype by monoclonal antibodies. Cell 41: 697–706.

    CAS  Google Scholar 

  • Egeblad M, Mortensen OH, Jaattela M . (2001). Truncated ErbB2 receptor enhances ErbB1 signaling and induces reversible, ERK-independent loss of epithelial morphology. Int J Cancer 94: 185–191.

    CAS  Google Scholar 

  • Emlet DR, Schwartz R, Brown KA, Pollice AA, Smith CA, Shackney SE . (2006). HER2 expression as a potential marker for response to therapy targeted to the EGFR. Br J Cancer 94: 1144–1153.

    CAS  Google Scholar 

  • Faltus T, Yuan J, Zimmer B, Kramer A, Loibl S, Kaufmann M et al. (2004). Silencing of the HER2/neu gene by siRNA inhibits proliferation and induces apoptosis in HER2/neu-overexpressing breast cancer cells. Neoplasia 6: 786–795.

    CAS  Google Scholar 

  • Finn RS, Wilson CA, Chen J, Glaspy P, Dering J, Cook A et al. (2004). Biologic effects of CP-724,714, a selective HER-2/neu kinase inhibitor, on human breast cancer cells with variable expression of EGFR and HER-2. Proc Am Assoc Can Res 45: #4556.

  • Fleming G, Gordon MS, Matei D, Aghajanian C, Matulonis UA, Brewer MA et al. (2005). Clinical activity of pertuzumab (rhuMab 2C4) in advanced, refractory or recurrent ovarian cancer (OC), and the role of HER2 activation status. Proc Amer Soc Clin Onc 23: #5051.

  • Fleming GF, Sill MA, Thigpen JT, Adler LM, Berek JS, DiSilvestro PA, Horowitz IR . (2003). Phase II evaluation of trastuzumab in patients with advanced or recurrent endometrial carcinoma: A report on GOG 181B. Proc Amer Soc Clin Onc 22: #1821.

  • Friess T, Scheuer W, Hasmann M . (2005). Combination treatment with erlotinib and pertuzumab against human tumor xenografts is superior to monotherapy. Clin Cancer Res 11: 5300–5309.

    CAS  Google Scholar 

  • Fujii A, Suzuki T, Ohya JI, Nakamura H, Fujita F, Koike M et al. (2005). MP-412, a dual EGFR/HER2 tyrosine kinase inhibitor: 2. In vivo antitumor effects. Proc Am Assoc Can Res 46: #3394.

  • Fujita T, Doihara H, Kawasaki K, Takabatake D, Takahashi H, Washio K et al. (2006). PTEN activity could be a predictive marker of trastuzumab efficacy in the treatment of ErbB2-overexpressing breast cancer. Br J Cancer 94: 247–252.

    CAS  Google Scholar 

  • Garrett TP, McKern NM, Lou M, Elleman TC, Adams TE, Lovrecz GO et al. (2003). The crystal structure of a truncated ErbB2 ectodomain reveals an active conformation, poised to interact with other ErbB receptors. Mol Cell 11: 495–505.

    CAS  Google Scholar 

  • Gennari R, Menard S, Fagnoni F, Ponchio L, Scelsi M, Tagliabue E et al. (2004). Pilot study of the mechanism of action of preoperative trastuzumab in patients with primary operable breast tumors overexpressing HER2. Clin Cancer Res 10: 5650–5655.

    CAS  Google Scholar 

  • Ghossein RA, Bhattacharya S . (2001). Molecular detection and characterization of circulating tumor cells and micrometastases in prostatic, urothelial, and renal cell carcinomas. [Review] [51 refs]. Semin Surg Oncol 20: 304–311.

    CAS  Google Scholar 

  • Gomez HL, Chavez MA, Doval DC, Nag S, Chow LW, Ang PC et al. (2005). Biomarker results from a phase II randomized study of lapatinib (GW572016) as first-line treatment for patients with ErbB2 FISH-amplified advanced or metastatic breast cancer. Breast Cancer Res Treat 94 (Suppl 1): S63, (abstract 1071).

    Google Scholar 

  • Harwerth IM, Wels W, Marte BM, Hynes NE . (1992). Monoclonal antibodies against the extracellular domain of the erbB-2 receptor function as partial ligand agonists. J Biol Chem 267: 15160–15167.

    CAS  Google Scholar 

  • Harwerth IM, Wels W, Schlegel J, Muller M, Hynes NE . (1993). Monoclonal antibodies directed to the erbB-2 receptor inhibit in vivo tumour cell growth. Br J Cancer 68: 1140–1145.

    CAS  Google Scholar 

  • Hudziak RM, Lewis GD, Winget M, Fendly BM, Shepard HM, Ullrich A . (1989). p185HER2 monoclonal antibody has antiproliferative effects in vitro and sensitizes human breast tumor cells to tumor necrosis factor. Mol Cell Biol 9: 1165–1172.

    CAS  Google Scholar 

  • Hurwitz E, Stancovski I, Sela M, Yarden Y . (1995). Suppression and promotion of tumor growth by monoclonal antibodies to ErbB-2 differentially correlate with cellular uptake. Proc Natl Acad Sci USA 92: 3353–3357.

    CAS  Google Scholar 

  • Iwata H, Toi M, Fujiwara Y, Ito Y, Fujii H, Nakamura S et al. (2006). Phase II clinical study of lapatinib (GW572016) in patients with advanced or metastatic breast cancer. San Antonio Br Can Symp # 1091.

  • Izumi Y, Xu L, di TE, Fukumura D, Jain RK . (2002). Tumour biology: herceptin acts as an anti-angiogenic cocktail. Nature 416: 279–280.

    CAS  Google Scholar 

  • Jani JP, Barbacci EG, Bhattacharya S, Boos C, Campbell M, Clark T et al. (2004a). Discovery and development of CP-724714, a selective HER2 receptor tyrosine kinase inhibitor. Proc Amer Soc Clin Onc 22: #3122.

  • Jani JP, Barbacci EG, Bhattacharya S, Moyer JD . (2004b). CP-724714, a novel erbB2 receptor tyrosine kinase inhibitor for cancer therapy. Proc Am Assoc Can Res 45: #4637.

  • Juhl H, Downing SG, Wellstein A, Czubayko F . (1997). HER-2/neu is rate-limiting for ovarian cancer growth. Conditional depletion of HER-2/neu by ribozyme targeting. J Biol Chem 272: 29482–29486.

    CAS  Google Scholar 

  • Kiewe P, Hasmuller S, Kahlert S, Heinrigs M, Rack B, Marme A et al. (2006). Phase I trial of the trifunctional anti-HER2 x anti-CD3 antibody ertumaxomab in metastatic breast cancer. Clin Cancer Res 12: 3085–3091.

    CAS  Google Scholar 

  • King CR, Kraus MH, Aaronson SA . (1985). Amplification of a novel v-erbB-related gene in a human mammary carcinoma. Science 229: 974–976.

    CAS  Google Scholar 

  • Kita Y, Tseng J, Horan T, Wen J, Philo J, Chang D et al. (1996). ErbB receptor activation, cell morphology changes, and apoptosis induced by anti-Her2 monoclonal antibodies. Biochem Biophys Res Commun 226: 59–69.

    CAS  Google Scholar 

  • Klapper LN, Vaisman N, Hurwitz E, Pinkas-Kramarski R, Yarden Y, Sela M . (1997). A subclass of tumor-inhibitory monoclonal antibodies to ErbB-2/HER2 blocks crosstalk with growth factor receptors. Oncogene 14: 2099–2109.

    CAS  Google Scholar 

  • Konecny GE, Pegram MD, Venkatesan N, Finn R, Yang G, Rahmeh M et al. (2006). Activity of the dual kinase inhibitor lapatinib (GW572016) against HER-2-overexpressing and trastuzumab-treated breast cancer cells. Cancer Res 66: 1630–1639.

    CAS  Google Scholar 

  • Kubo M, Morisaki T, Kuroki H, Tasaki A, Yamanaka N, Matsumoto K et al. (2003). Combination of adoptive immunotherapy with Herceptin for patients with HER2-expressing breast cancer. Anticancer Res 23: 4443–4449.

    CAS  Google Scholar 

  • Kumar PS, Pegram M . (2006). Targeting HER2 Epitopes. Semin Oncol 33: 386–391.

    Google Scholar 

  • Kurokawa H, Lenferink AE, Simpson JF, Pisacane PI, Sliwkowski MX, Forbes JT et al. (2000). Inhibition of HER2/neu (erbB-2) and mitogen-activated protein kinases enhances tamoxifen action against HER2-overexpressing, tamoxifen-resistant breast cancer cells. Cancer Res 60: 5887–5894.

    CAS  Google Scholar 

  • Kwak EL, Sordella R, Bell DW, Godin-Heymann N, Okimoto RA, Brannigan BW et al. (2005). Irreversible inhibitors of the EGF receptor may circumvent acquired resistance to gefitinib. Proc Natl Acad Sci USA 102: 7665–7670.

    CAS  Google Scholar 

  • Lane HA, Beuvink I, Motoyama AB, Daly JM, Neve RM, Hynes NE . (2000). ErbB2 potentiates breast tumor proliferation through modulation of p27(Kip1)-Cdk2 complex formation: receptor overexpression does not determine growth dependency. Mol Cell Biol 20: 3210–3223.

    CAS  Google Scholar 

  • Le XF, Pruefer F, Bast Jr RC . (2005). HER2-targeting antibodies modulate the cyclin-dependent kinase inhibitor p27Kip1 via multiple signaling pathways. Cell Cycle 4: 87–95.

    CAS  Google Scholar 

  • Lee S, Yang W, Lan KH, Sellappan S, Klos K, Hortobagyi G et al. (2002). Enhanced sensitization to taxol-induced apoptosis by herceptin pretreatment in ErbB2-overexpressing breast cancer cells. Cancer Res 62: 5703–5710.

    CAS  Google Scholar 

  • Lenferink AE, Busse D, Flanagan WM, Yakes FM, Arteaga CL . (2001). ErbB2/neu kinase modulates cellular p27(Kip1) and cyclin D1 through multiple signaling pathways. Cancer Res 61: 6583–6591.

    CAS  Google Scholar 

  • Lenferink AE, Simpson JF, Shawver LK, Coffey RJ, Forbes JT, Arteaga CL . (2000). Blockade of the epidermal growth factor receptor tyrosine kinase suppresses tumorigenesis in MMTV/Neu+MMTV/TGF-alpha bigenic mice. Proc Natl Acad Sci USA 97: 9609–9614.

    CAS  Google Scholar 

  • Levitzki A, Gazit A . (1995). Tyrosine kinase inhibition: an approach to drug development. Science 267: 1782–1788.

    CAS  Google Scholar 

  • Lewis GD, Figari I, Fendly B, Wong WL, Carter P, Gorman C et al. (1993). Differential responses of human tumor cell lines to anti-p185HER2 monoclonal antibodies. Cancer Immunol Immunother 37: 255–263.

    CAS  Google Scholar 

  • Liu PC, Liu X, Li Y, Covington M, Wynn R, Huber R et al. (2006). Identification of ADAM10 as a major source of HER2 ectodomain sheddase activity in HER2 overexpressing breast cancer cells. Cancer Biol Ther 5: 657–664.

    CAS  Google Scholar 

  • Longva KE, Pedersen NM, Haslekas C, Stang E, Madshus IH . (2005). Herceptin-induced inhibition of ErbB2 signaling involves reduced phosphorylation of Akt but not endocytic down-regulation of ErbB2. Int J Cancer 116: 359–367.

    CAS  Google Scholar 

  • Lydon NB, Mett H, Mueller M, Becker M, Cozens RM, Stover D et al. (1998). A potent protein-tyrosine kinase inhibitor which selectively blocks proliferation of epidermal growth factor receptor-expressing tumor cells in vitro and in vivo. Int J Cancer 76: 154–163.

    CAS  Google Scholar 

  • Marches R, Uhr JW . (2004). Enhancement of the p27Kip1-mediated antiproliferative effect of trastuzumab (Herceptin) on HER2-overexpressing tumor cells. Int J Cancer 112: 492–501.

    CAS  Google Scholar 

  • Marty M, Cognetti F, Maraninchi D, Snyder R, Mauriac L, Tubiana-Hulin M et al. (2005). Randomized phase II trial of the efficacy and safety of trastuzumab combined with docetaxel in patients with human epidermal growth factor receptor 2-positive metastatic breast cancer administered as first-line treatment: the M77001 study group. J Clin Onc 23: 4265–4274.

    CAS  Google Scholar 

  • Mass RD, Press MF, Anderson S, Cobleigh MA, Vogel CL, Dybdal N et al. (2005). Evaluation of clinical outcomes according to HER2 detection by fluorescence in situ hybridization in women with metastatic breast cancer treated with trastuzumab. Clin Breast Cancer 6: 240–246.

    Google Scholar 

  • McKenzie SJ, Marks PJ, Lam T, Morgan J, Panicali DL, Trimpe KL et al. (1989). Generation and characterization of monoclonal antibodies specific for the human neu oncogene product, p185. Oncogene 4: 543–548.

    CAS  Google Scholar 

  • McKillop D, Partridge EA, Kemp JV, Spence MP, Kendrew J, Barnett S et al. (2005). Tumor penetration of gefitinib (Iressa), an epidermal growth factor receptor tyrosine kinase inhibitor. Mol Cancer Ther 4: 641–649.

    CAS  Google Scholar 

  • Menard S, Pupa SM, Campiglio M, Tagliabue E . (2003). Biologic and therapeutic role of HER2 in cancer. Oncogene 22: 6570–6578.

    CAS  Google Scholar 

  • Messerle K, Schlegel J, Hynes NE, Groner B . (1994). NIH/3T3 cells transformed with the activated erbB-2 oncogene can be phenotypically reverted by a kinase deficient, dominant negative erbB-2 variant. Mol Cell Endocrinol 105: 1–10.

    CAS  Google Scholar 

  • Miknis G, Wallace E, Lyssikatos J, Lee P, Zhao Q, Hans J et al. (2005). ARRY-334543, A potent, orally active small molecule inhibitor of EGFR and ErbB-2. Proc Am Assoc Can Res 24: #3399.

  • Moasser MM, Basso A, Averbuch SD, Rosen N . (2001). The tyrosine kinase inhibitor ZD1839 (“Iressa”) inhibits HER2-driven signaling and suppresses the growth of HER2-overexpressing tumor cells. Cancer Research 61: 7184–7188.

    CAS  Google Scholar 

  • Moasser MM . (2007). The oncogene HER2: its signaling and transforming functions and its role in human cancer pathogenesis. Oncogene (in press).

  • Mohsin SK, Weiss HL, Gutierrez MC, Chamness GC, Schiff R, DiGiovanna MP et al. (2005). Neoadjuvant trastuzumab induces apoptosis in primary breast cancers. J Clin Oncol 23: 2460–2468.

    CAS  Google Scholar 

  • Molina MA, Codony-Servat J, Albanell J, Rojo F, Arribas J, Baselga J . (2001). Trastuzumab (herceptin), a humanized anti-Her2 receptor monoclonal antibody, inhibits basal and activated Her2 ectodomain cleavage in breast cancer cells. Cancer Res 61: 4744–4749.

    CAS  Google Scholar 

  • Molina MA, Saez R, Ramsey EE, Garcia-Barchino MJ, Rojo F, Evans AJ et al. (2002). NH(2)-terminal truncated HER-2 protein but not full-length receptor is associated with nodal metastasis in human breast cancer. Clin Cancer Res 8: 347–353.

    CAS  Google Scholar 

  • Moody SE, Perez D, Pan TC, Sarkisian CJ, Portocarrero CP, Sterner CJ et al. (2005). The transcriptional repressor Snail promotes mammary tumor recurrence. Cancer Cell 8: 197–209.

    CAS  Google Scholar 

  • Moody SE, Sarkisian CJ, Hahn KT, Gunther EJ, Pickup S, Dugan KD et al. (2002). Conditional activation of Neu in the mammary epithelium of transgenic mice results in reversible pulmonary metastasis. Cancer Cell 2: 451–461.

    CAS  Google Scholar 

  • Moulder SL, Yakes FM, Muthuswamy SK, Bianco R, Simpson JF, Arteaga CL . (2001). Epidermal growth factor receptor (HER1) tyrosine kinase inhibitor ZD1839 (Iressa) inhibits HER2/neu (erbB2)-overexpressing breast cancer cells in vitro and in vivo. Cancer Research 61: 8887–8895.

    CAS  Google Scholar 

  • Moyer JD, Barbacci EG, Iwata KK, Arnold L, Boman B, Cunningham A et al. (1997). Induction of apoptosis and cell cycle arrest by CP-358,774, an inhibitor of epidermal growth factor receptor tyrosine kinase. Cancer Res 57: 4838–4848.

    CAS  Google Scholar 

  • Nagata Y, Lan KH, Zhou X, Tan M, Esteva FJ, Sahin AA et al. (2004). PTEN activation contributes to tumor inhibition by trastuzumab, and loss of PTEN predicts trastuzumab resistance in patients. Cancer Cell 6: 117–127.

    CAS  Google Scholar 

  • Naito K, Matsutani E, Tamura T, Miwa K, Takakura N, Asada M et al. (2002). TAK-165, a selective inhibitor of HER2 tyrosine kinase: 1. Nature of tyrosine kinase inhibition and selective antitumor activity in vivo and in vitro. Proc Am Assoc Can Res 43: # 3897.

  • Neve RM, Nielsen UB, Kirpotin DB, Poul MA, Marks JD, Benz CC . (2001). Biological effects of anti-ErbB2 single chain antibodies selected for internalizing function. Biochem Biophys Res Commun 280: 274–279.

    CAS  Google Scholar 

  • Normanno N, Campiglio M, De LA, Somenzi G, Maiello M, Ciardiello F et al. (2002). Cooperative inhibitory effect of ZD1839 (Iressa) in combination with trastuzumab (Herceptin) on human breast cancer cell growth. [comment]. Annals of Oncology 13: 65–72.

    CAS  Google Scholar 

  • Parsa AT, Waldron JS, Panner A, Crane CA, Parney IF, Barry JJ et al. (2007). Loss of tumor suppressor PTEN function increases B7-H1 expression and immunoresistance in glioma. Nat Med 13: 84–88.

    CAS  Google Scholar 

  • Pheneger T, Woessner R, Lyssikatos J, Miknis G, Anderson D, Winski S et al. (2005). In vivo anti-tumor activity of arry-334543, a small molecule inhibitor of EGFR and ErbB-2. Proc AACR-NCI-EORTC Conference # A247.

  • Piccart-Gebhart MJ, Procter M, Leyland-Jones B, Goldhirsch A, Untch M, Smith I et al. (2005). Trastuzumab after Adjuvant Chemotherapy in HER2-Positive Breast Cancer. N Engl J Med 353: 1659–1672.

    CAS  Google Scholar 

  • Qian X, Dougall WC, Hellman ME, Greene MI . (1994). Kinase-deficient neu proteins suppress epidermal growth factor receptor function and abolish cell transformation. Oncogene 9: 1507–1514.

    CAS  Google Scholar 

  • Rabindran SK . (2005). Antitumor activity of HER-2 inhibitors. Cancer Lett 227: 9–23.

    CAS  Google Scholar 

  • Rabindran SK, Discafani CM, Rosfjord EC, Baxter M, Floyd MB, Golas J et al. (2004). Antitumor activity of HKI-272, an orally active, irreversible inhibitor of the HER-2 tyrosine kinase. Cancer Res 64: 3958–3965.

    CAS  Google Scholar 

  • Repka T, Chiorean EG, Gay J, Herwig KE, Kohl VK, Yee D et al. (2003). Trastuzumab and interleukin-2 in HER2-positive metastatic breast cancer: a pilot study. Clin Cancer Res 9: 2440–2446.

    CAS  Google Scholar 

  • Rewcastle GW, Denny WA, Bridges AJ, Zhou H, Cody DR, McMichael A et al. (1995). Tyrosine kinase inhibitors. 5. Synthesis and structure-activity relationships for 4-[(phenylmethyl)amino]- and 4-(phenylamino)quinazolines as potent adenosine 5′-triphosphate binding site inhibitors of the tyrosine kinase domain of the epidermal growth factor receptor. J Med Chem 38: 3482–3487.

    CAS  Google Scholar 

  • Robertson JFR, Gutteridge E, Cheung KL, Owers R, Koehler M, Hamilton L et al. (2003). Gefitinib (ZD1839) is active in acquired tamoxifen (TAM)-resistant oestrogen receptor (ER)-positive and ER-negative breast cancer: Results from a phase II study. Proc Amer Soc Clin Onc 22: #23.

  • Robinson MO, Lin J . (2006). AV-412, a potent EGFRsHER2 TK inhibitor causes tumor regression in novel genetically engineered EGFRL858R and EGFRL858R&T790M lung tumor models. Eur J Cancer Suppl 4: 169.

    Google Scholar 

  • Roh H, Pippin J, Drebin JA . (2000). Down-regulation of HER2/neu expression induces apoptosis in human cancer cells that overexpress HER2/neu. Cancer Res 60: 560–565.

    CAS  Google Scholar 

  • Romond EH, Perez EA, Bryant J, Suman VJ, Geyer Jr CE, Davidson NE et al. (2005). Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer. N Engl J Med 353: 1673–1684.

    CAS  Google Scholar 

  • Rusnak DW, Lackey K, Affleck K, Wood ER, Alligood KJ, Rhodes N et al. (2001). The effects of the novel, reversible epidermal growth factor receptor/ErbB-2 tyrosine kinase inhibitor, GW2016, on the growth of human normal and tumor-derived cell lines in vitro and in vivo. Mol Cancer Ther 1: 85–94.

    CAS  Google Scholar 

  • Saal LH, Holm K, Maurer M, Memeo L, Su T, Wang X et al. (2005). PIK3CA mutations correlate with hormone receptors, node metastasis, and ERBB2, and are mutually exclusive with PTEN loss in human breast carcinoma. Cancer Res 65: 2554–2559.

    CAS  Google Scholar 

  • Sarup JC, Johnson RM, King KL, Fendly BM, Lipari MT, Napier MA et al. (1991). Characterization of an anti-p185HER2 monoclonal antibody that stimulates receptor function and inhibits tumor cell growth. Growth Regul 1: 72–82.

    CAS  Google Scholar 

  • Schiffer IB, Gebhard S, Heimerdinger CK, Heling A, Hast J, Wollscheid U et al. (2003). Switching off HER-2/neu in a tetracycline-controlled mouse tumor model leads to apoptosis and tumor-size-dependent remission. Cancer Res 63: 7221–7231.

    CAS  Google Scholar 

  • Segatto O, King CR, Pierce JH, Di Fiore PP, Aaronson SA . (1988). Different structural alterations upregulate in vitro tyrosine kinase activity and transforming potency of the erbB-2 gene. Mol Cell Biol 8: 5570–5574.

    CAS  Google Scholar 

  • Sergina NV, Rausch M, Wang D, Blair J, Hann B, Shokat KM et al. (2007). Escape from HER family tyrosine kinase inhibitor therapy by the kinase inactive HER3. Nature 445: 437–441.

    CAS  Google Scholar 

  • She Q, Solit D, Basso A, Moasser MM . (2003). Resistance to gefitinib (ZD1839, Iressa) in PTEN null HER overexpressing tumor cells can be overcome through restoration of PTEN function or pharmacologic modulation of constitutive PI3K/Akt pathway signaling. Clinical Cancer Res 9: 4340–4346.

    CAS  Google Scholar 

  • Shepard HM, Lewis GD, Sarup JC, Fendly BM, Maneval D, Mordenti J et al. (1991). Monoclonal antibody therapy of human cancer: taking the HER2 protooncogene to the clinic. J Clin Immunol 11: 117–127.

    CAS  Google Scholar 

  • Shepherd TG, Kockeritz L, Szrajber MR, Muller WJ, Hassell JA . (2001). The pea3 subfamily ets genes are required for HER2/Neu-mediated mammary oncogenesis. Curr Biol 11: 1739–1748.

    CAS  Google Scholar 

  • Shih C, Padhy LC, Murray M, Weinberg RA . (1981). Transforming genes of carcinomas and neuroblastomas introduced into mouse fibroblasts. Nature 290: 261–264.

    CAS  Google Scholar 

  • Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL . (1987). Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 235: 177–182.

    CAS  Google Scholar 

  • Slamon DJ, Godolphin W, Jones LA, Holt JA, Wong SG, Keith DE et al. (1989). Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science 244: 707–712.

    CAS  Google Scholar 

  • Slamon DJ, Leyland-Jones B, Shak S, Fuchs H, Paton V, Bajamonde A et al. (2001). Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. [see comment]. N Engl J Med 344: 783–792.

    CAS  Google Scholar 

  • Slichenmyer WJ, Elliott WL, Fry DW . (2001). CI-1033, a pan-erbB tyrosine kinase inhibitor. [Review] [19 refs]. Semin Oncol 28: 80–85.

    CAS  Google Scholar 

  • Sliwkowski MX . (2003). Ready to partner. Nat Struct Biol 10: 158–159.

    CAS  Google Scholar 

  • Solca F, Baum A, Guth B, Colbatzky F, Blech S, Amelsberg A et al. (2006). BIBW 2992, an irreversible dual EGFR/HER2 receptor tyrosine kinase inhibitor for cancer therapy. Proc AACR-NCI-EORTC Conference # A244.

  • Spector NL, Xia W, Burris III H, Hurwitz H, Dees EC, Dowlati A et al. (2005). Study of the biologic effects of lapatinib, a reversible inhibitor of ErbB1 and ErbB2 tyrosine kinases, on tumor growth and survival pathways in patients with advanced malignancies. J Clin Oncol 23: 2502–2512.

    CAS  Google Scholar 

  • Srinivas U, Tagliabue E, Campiglio M, Menard S, Colnaghi MI . (1993). Antibody-induced activation of p185HER2 in the human lung adenocarcinoma cell line Calu-3 requires bivalency. Cancer Immunol Immunother 36: 397–402.

    CAS  Google Scholar 

  • Stamos J, Sliwkowski MX, Eigenbrot C . (2002). Structure of the epidermal growth factor receptor kinase domain alone and in complex with a 4-anilinoquinazoline inhibitor. J Biol Chem 277: 46265–46272.

    CAS  Google Scholar 

  • Stancovski I, Hurwitz E, Leitner O, Ullrich A, Yarden Y, Sela M . (1991). Mechanistic aspects of the opposing effects of monoclonal antibodies to the ERBB2 receptor on tumor growth. Proc Natl Acad Sci USA 88: 8691–8695.

    CAS  Google Scholar 

  • Suzuki E, Niwa R, Saji S, Muta M, Hirose M, Iida S et al. (2007). A Nonfucosylated Anti-HER2 Antibody Augments Antibody-Dependent Cellular Cytotoxicity in Breast Cancer Patients. Clinical Cancer Res 13: 1875–1882.

    CAS  Google Scholar 

  • Tagliabue E, Centis F, Campiglio M, Mastroianni A, Martignone S, Pellegrini R et al. (1991). Selection of monoclonal antibodies which induce internalization and phosphorylation of p185HER2 and growth inhibition of cells with HER2/NEU gene amplification. Int J Cancer 47: 933–937.

    CAS  Google Scholar 

  • Takai N, Jain A, Kawamata N, Popoviciu LM, Said JW, Whittaker S et al. (2005). 2C4, a monoclonal antibody against HER2, disrupts the HER kinase signaling pathway and inhibits ovarian carcinoma cell growth. Cancer 104: 2701–2708.

    CAS  Google Scholar 

  • Tan AR, Yang X, Hewitt SM, Berman A, Lepper ER, Sparreboom A et al. (2004). Evaluation of biologic end points and pharmacokinetics in patients with metastatic breast cancer after treatment with erlotinib, an epidermal growth factor receptor tyrosine kinase inhibitor. J Clin Oncol 22: 3080–3090.

    CAS  Google Scholar 

  • Tokuda Y, Ohnishi Y, Shimamura K, Iwasawa M, Yoshimura M, Ueyama Y et al. (1996). In vitro and in vivo anti-tumour effects of a humanised monoclonal antibody against c-erbB-2 product. Br J Cancer 73: 1362–1365.

    CAS  Google Scholar 

  • Torrance CJ, Jackson PE, Montgomery E, Kinzler KW, Vogelstein B, Wissner A et al. (2000). Combinatorial chemoprevention of intestinal neoplasia. Nat Med 6: 1024–1028.

    CAS  Google Scholar 

  • Traxler P, Allegrini PR, Brandt R, Brueggen J, Cozens R, Fabbro D et al. (2004). AEE788: a dual family epidermal growth factor receptor/ErbB2 and vascular endothelial growth factor receptor tyrosine kinase inhibitor with antitumor and antiangiogenic activity. Cancer Res 64: 4931–4941.

    CAS  Google Scholar 

  • Traxler P, Bold G, Buchdunger E, Caravatti G, Furet P, Manley P et al. (2001). Tyrosine kinase inhibitors: from rational design to clinical trials. Med Res Rev 21: 499–512.

    CAS  Google Scholar 

  • Tsou HR, Overbeek-Klumpers EG, Hallett WA, Reich MF, Floyd MB, Johnson BD et al. (2005). Optimization of 6,7-disubstituted-4-(arylamino)quinoline-3-carbonitriles as orally active, irreversible inhibitors of human epidermal growth factor receptor-2 kinase activity. J Med Chem 48: 1107–1131.

    CAS  Google Scholar 

  • Van Leeuwen F, Van de Vijver MJ, Lomans J, Van Deemter L, Jenster G, Akiyama T et al. (1990). Mutation of the human neu protein facilitates down-modulation by monoclonal antibodies. Oncogene 5: 497–503.

    CAS  Google Scholar 

  • Vogel CL, Cobleigh MA, Tripathy D, Gutheil JC, Harris LN, Fehrenbacher L et al. (2002). Efficacy and safety of trastuzumab as a single agent in first-line treatment of HER2-overexpressing metastatic breast cancer. J Clin Onc 20: 719–726.

    CAS  Google Scholar 

  • Wakeling AE, Guy SP, Woodburn JR, Ashton SE, Curry BJ, Barker AJ et al. (2002). ZD1839 (Iressa): an orally active inhibitor of epidermal growth factor signaling with potential for cancer therapy. Cancer Res 62: 5749–5754.

    CAS  Google Scholar 

  • Warburton C, Dragowska WH, Gelmon K, Chia S, Yan H, Masin D et al. (2004). Treatment of HER-2/neu overexpressing breast cancer xenograft models with trastuzumab (Herceptin) and gefitinib (ZD1839): drug combination effects on tumor growth, HER-2/neu and epidermal growth factor receptor expression, and viable hypoxic cell fraction. Clin Cancer Res 10: 2512–2524.

    CAS  Google Scholar 

  • Ward WH, Cook PN, Slater AM, Davies DH, Holdgate GA, Green LR . (1994). Epidermal growth factor receptor tyrosine kinase. Investigation of catalytic mechanism, structure-based searching and discovery of a potent inhibitor. Biochem Pharmacol 48: 659–666.

    CAS  Google Scholar 

  • Wehrman TS, Raab WJ, Casipit CL, Doyonnas R, Pomerantz JH, Blau HM . (2006). A system for quantifying dynamic protein interactions defines a role for Herceptin in modulating ErbB2 interactions. Proc Natl Acad Sci USA 103: 19063–19068.

    CAS  Google Scholar 

  • Weiner DB, Kokai Y, Wada T, Cohen JA, Williams WV, Greene MI . (1989). Linkage of tyrosine kinase activity with transforming ability of the p185neu oncoprotein. Oncogene 4: 1175–1183.

    CAS  Google Scholar 

  • Weinstein IB . (2002). Cancer. Addiction to oncogenes – the Achilles heal of cancer. Science 297: 63–64.

    CAS  Google Scholar 

  • Winer EP, Cobleigh M, Dickler M, Miller K, Fehrehbacher L, Jones CM et al. (2002). Phase II multicenter study to evaluate the efficacy and safety of Tarceva (Erlotinib HCl, OSI-774) in women with previously treated, locally advanced or metastatic breast cancer. San Antonio Br Can Symp (abstract 445).

  • Wissner A, Overbeek E, Reich MF, Floyd MB, Johnson BD, Mamuya N et al. (2003). Synthesis and structure-activity relationships of 6,7-disubstituted 4-anilinoquinoline-3-carbonitriles. The design of an orally active, irreversible inhibitor of the tyrosine kinase activity of the epidermal growth factor receptor (EGFR) and the human epidermal growth factor receptor-2 (HER-2). J Med Chem 46: 49–63.

    CAS  Google Scholar 

  • Wong TW, Lee FY, Yu C, Luo FR, Oppenheimer S, Zhang H et al. (2006). Preclinical antitumor activity of BMS-599626, a pan-HER kinase inhibitor that inhibits HER1/HER2 homodimer and heterodimer signaling. Clin Cancer Res 12: 6186–6193.

    CAS  Google Scholar 

  • Wood ER, Truesdale AT, McDonald OB, Yuan D, Hassell A, Dickerson SH et al. (2004). A unique structure for epidermal growth factor receptor bound to GW572016 (Lapatinib): relationships among protein conformation, inhibitor off-rate, and receptor activity in tumor cells. Cancer Res 64: 6652–6659.

    CAS  Google Scholar 

  • Xie W, Chow LT, Paterson AJ, Chin E, Kudlow JE . (1999). Conditional expression of the ErbB2 oncogene elicits reversible hyperplasia in stratified epithelia and up-regulation of TGFalpha expression in transgenic mice. Oncogene 18: 3593–3607.

    CAS  Google Scholar 

  • Xu F, Lupu R, Rodriguez GC, Whitaker RS, Boente MP, Berchuck A et al. (1993). Antibody-induced growth inhibition is mediated through immunochemically and functionally distinct epitopes on the extracellular domain of the c-erbB-2 (HER-2/neu) gene product p185. Int J Cancer 53: 401–408.

    CAS  Google Scholar 

  • Yakes FM, Chinratanalab W, Ritter CA, King W, Seelig S, Arteaga CL . (2002). Herceptin-induced inhibition of phosphatidylinositol-3 kinase and Akt Is required for antibody-mediated effects on p27, cyclin D1, and antitumor action. Cancer Res 62: 4132–4141.

    CAS  Google Scholar 

  • Yarden Y . (1990). Agonistic antibodies stimulate the kinase encoded by the neu protooncogene in living cells but the oncogenic mutant is constitutively active. Proc Natl Acad Sci USA 87: 2569–2573.

    CAS  Google Scholar 

  • Yokoyama H, Ikehara Y, Kodera Y, Ikehara S, Yatabe Y, Mochizuki Y et al. (2006). Molecular basis for sensitivity and acquired resistance to gefitinib in HER2-overexpressing human gastric cancer cell lines derived from liver metastasis. Br J Cancer 95: 1504–1513.

    CAS  Google Scholar 

  • Yoshida S, Naito K, Hori A, Teratani M, Koyama M, Tasaka A et al. (2002). Tak-165, a selective inhibitor of HER2 tyrosine kinase: 2. Mechanism of antitumor activity on HER2 signal transduction pathway. Proc Am Assoc Can Res 43: # 3898.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M M Moasser.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moasser, M. Targeting the function of the HER2 oncogene in human cancer therapeutics. Oncogene 26, 6577–6592 (2007). https://doi.org/10.1038/sj.onc.1210478

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210478

Keywords

This article is cited by

Search

Quick links