Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Glycogen synthase kinase-3β and p38 phosphorylate cyclin D2 on Thr280 to trigger its ubiquitin/proteasome-dependent degradation in hematopoietic cells

Abstract

Cyclin D2 plays an important role in regulation of hematopoietic cell proliferation by cytokines and is implicated in oncogenesis of various hematopoietic malignancies. However, mechanisms regulating cyclin D2 stability and its expression level have remained to be known. Here, we demonstrate that interleukin-3 signaling stabilizes cyclin D2 by inhibition of glycogen synthase kinase-3β (GSK3β) through Janus kinase2-dependent activation of phosphatidylinositol 3′-kinase (PI3K)/Akt signaling pathway in hematopoietic 32Dcl3 cells. On the other hand, osmotic stress was shown to induce a rapid proteasomal degradation of cyclin D2, which was mediated by activation of p38. GSK3β and p38 was demonstrated to phosphorylate cyclin D2 on Thr280 in vitro, while a cyclin D2 mutant with this residue substituted with Ala was found to be resistant to ubiquitination and proteasome-dependent degradation in 32Dcl3 cells. Inhibition of the PI3K pathway or induction of osmotic stress also caused a rapid proteasomal degradation of cyclin D2 in primary leukemic or myeloma cells. These results indicate that cyclin D2 expression in normal and malignant hematopoietic cells is regulated by ubiquitin/proteasome-dependent degradation that is triggered by Thr280 phosphorylation by GSK3β or p38, which is induced by inhibition of the PI3K pathway or by osmotic stress, respectively.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Agami R, Bernards R . (2000). Distinct initiation and maintenance mechanisms cooperate to induce G1 cell cycle arrest in response to DNA damage. Cell 102: 55–66.

    Article  CAS  Google Scholar 

  • Ando K, Ajchenbaum-Cymbalista F, Griffin JD . (1993). Regulation of G1/S transition by cyclins D2 and D3 in hematopoietic cells. Proc Natl Acad Sci USA 90: 9571–9575.

    Article  CAS  Google Scholar 

  • Benzeno S, Lu F, Guo M, Barbash O, Zhang F, Herman JG et al. (2006). Identification of mutations that disrupt phosphorylation-dependent nuclear export of cyclin D1. Oncogene 25: 6291–6303.

    Article  CAS  Google Scholar 

  • Bergsagel PL, Kuehl WM, Zhan F, Sawyer J, Barlogie B, Shaughnessy Jr J . (2005). Cyclin D dysregulation: an early and unifying pathogenic event in multiple myeloma. Blood 106: 296–303.

    Article  CAS  Google Scholar 

  • Brazil DP, Yang ZZ, Hemmings BA . (2004). Advances in protein kinase B signalling: AKTion on multiple fronts. Trends Biochem Sci 29: 233–242.

    Article  CAS  Google Scholar 

  • Carthon BC, Neumann CA, Das M, Pawlyk B, Li T, Geng Y et al. (2005). Genetic replacement of cyclin D1 function in mouse development by cyclin D2. Mol Cell Biol 25: 1081–1088.

    Article  CAS  Google Scholar 

  • Casanovas O, Jaumot M, Paules AB, Agell N, Bachs O . (2004). P38SAPK2 phosphorylates cyclin D3 at Thr-283 and targets it for proteasomal degradation. Oncogene 23: 7537–7544.

    Article  CAS  Google Scholar 

  • Casanovas O, Miro F, Estanyol JM, Itarte E, Agell N, Bachs O . (2000). Osmotic stress regulates the stability of cyclin D1 in a p38SAPK2-dependent manner. J Biol Chem 275: 35091–35097.

    Article  CAS  Google Scholar 

  • Chiles TC . (2004). Regulation and function of cyclin D2 in B lymphocyte subsets. J Immunol 173: 2901–2907.

    Article  CAS  Google Scholar 

  • Chin H, Arai A, Wakao H, Kamiyama R, Miyasaka N, Miura O . (1998). Lyn physically associates with the erythropoietin receptor and may play a role in activation of the Stat5 pathway. Blood 91: 3734–3745.

    CAS  Google Scholar 

  • Clappier E, Cuccuini W, Cayuela JM, Vecchione D, Baruchel A, Dombret H et al. (2006). Cyclin D2 dysregulation by chromosomal translocations to TCR loci in T-cell acute lymphoblastic leukemias. Leukemia 20: 82–86.

    Article  CAS  Google Scholar 

  • Deininger MW, Vieira SA, Parada Y, Banerji L, Lam EW, Peters G et al. (2001). Direct relation between BCR-ABL tyrosine kinase activity and cyclin D2 expression in lymphoblasts. Cancer Res 61: 8005–8013.

    CAS  Google Scholar 

  • Delmer A, Ajchenbaum-Cymbalista F, Tang R, Ramond S, Faussat AM, Marie JP et al. (1995). Overexpression of cyclin D2 in chronic B-cell malignancies. Blood 85: 2870–2876.

    CAS  Google Scholar 

  • Deshpande A, Sicinski P, Hinds PW . (2005). Cyclins and cdks in development and cancer: a perspective. Oncogene 24: 2909–2915.

    Article  CAS  Google Scholar 

  • Diehl JA, Cheng M, Roussel MF, Sherr CJ . (1998). Glycogen synthase kinase-3beta regulates cyclin D1 proteolysis and subcellular localization. Genes Dev 12: 3499–3511.

    Article  CAS  Google Scholar 

  • Diehl JA, Zindy F, Sherr CJ . (1997). Inhibition of cyclin D1 phosphorylation on threonine-286 prevents its rapid degradation via the ubiquitin-proteasome pathway. Genes Dev 11: 957–972.

    Article  CAS  Google Scholar 

  • Ely S, Di Liberto M, Niesvizky R, Baughn LB, Cho HJ, Hatada EN et al. (2005). Mutually exclusive cyclin-dependent kinase 4/cyclin D1 and cyclin-dependent kinase 6/cyclin D2 pairing inactivates retinoblastoma protein and promotes cell cycle dysregulation in multiple myeloma. Cancer Res 65: 11345–11353.

    Article  CAS  Google Scholar 

  • Fox BC, Crew TE, Welham MJ . (2005). Phosphoinositide 3-kinases can act independently of p27Kip1 to regulate optimal IL-3-dependent cell cycle progression and proliferation. Cell Signal 17: 473–487.

    Article  CAS  Google Scholar 

  • Hu X, Bryington M, Fisher AB, Liang X, Zhang X, Cui D et al. (2002). Ubiquitin/proteasome-dependent degradation of D-type cyclins is linked to tumor necrosis factor-induced cell cycle arrest. J Biol Chem 277: 16528–16537.

    Article  CAS  Google Scholar 

  • Huang W, Chang HY, Fei T, Wu H, Chen YG . (2007). GSK3beta mediates suppression of cyclin D2 expression by tumor suppressor PTEN. Oncogene 26: 2471–2482.

    Article  CAS  Google Scholar 

  • Ihle JN . (1995). Cytokine receptor signalling. Nature 377: 591–594.

    Article  CAS  Google Scholar 

  • Jena N, Deng M, Sicinska E, Sicinski P, Daley GQ . (2002). Critical role for cyclin D2 in BCR/ABL-induced proliferation of hematopoietic cells. Cancer Res 62: 535–541.

    CAS  Google Scholar 

  • Jope RS, Johnson GV . (2004). The glamour and gloom of glycogen synthase kinase-3. Trends Biochem Sci 29: 95–102.

    Article  CAS  Google Scholar 

  • Karrman K, Andersson A, Bjorgvinsdottir H, Strombeck B, Lassen C, Olofsson T et al. (2006). Deregulation of cyclin D2 by juxtaposition with T-cell receptor alpha/delta locus in t(12;14)(p13;q11)-positive childhood T-cell acute lymphoblastic leukemia. Eur J Haematol 77: 27–34.

    Article  CAS  Google Scholar 

  • Kato JY, Sherr CJ . (1993). Inhibition of granulocyte differentiation by G1 cyclins D2 and D3 but not D1. Proc Natl Acad Sci USA 90: 11513–11517.

    Article  CAS  Google Scholar 

  • Kozar K, Sicinski P . (2005). Cell cycle progression without cyclin D-CDK4 and cyclin D-CDK6 complexes. Cell Cycle 4: 388–391.

    Article  CAS  Google Scholar 

  • Kurosu T, Takahashi Y, Fukuda T, Koyama T, Miki T, Miura O . (2005). p38 MAP kinase plays a role in G2 checkpoint activation and inhibits apoptosis of human B cell lymphoma cells treated with etoposide. Apoptosis 10: 1111–1120.

    Article  CAS  Google Scholar 

  • Kwak YT, Li R, Becerra CR, Tripathy D, Frenkel EP, Verma UN . (2005). IkappaB kinase alpha regulates subcellular distribution and turnover of cyclin D1 by phosphorylation. J Biol Chem 280: 33945–33952.

    Article  CAS  Google Scholar 

  • Kyriakis JM, Avruch J . (2001). Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol Rev 81: 807–869.

    Article  CAS  Google Scholar 

  • Lin DI, Barbash O, Kumar KG, Weber JD, Harper JW, Klein-Szanto AJ et al. (2006). Phosphorylation-dependent ubiquitination of cyclin D1 by the SCF(FBX4-alphaB crystallin) complex. Mol Cell 24: 355–366.

    Article  CAS  Google Scholar 

  • Lucet IS, Fantino E, Styles M, Bamert R, Patel O, Broughton SE et al. (2006). The structural basis of Janus kinase 2 inhibition by a potent and specific pan-Janus kinase inhibitor. Blood 107: 176–183.

    Article  CAS  Google Scholar 

  • Ma Y, Feng Q, Sekula D, Diehl JA, Freemantle SJ, Dmitrovsky E . (2005). Retinoid targeting of different D-type cyclins through distinct chemopreventive mechanisms. Cancer Res 65: 6476–6483.

    Article  CAS  Google Scholar 

  • Malumbres M, Barbacid M . (2001). To cycle or not to cycle: a critical decision in cancer. Nat Rev Cancer 1: 222–231.

    Article  CAS  Google Scholar 

  • Miura O, Cleveland JL, Ihle JN . (1993). Inactivation of erythropoietin receptor function by point mutations in a region having homology with other cytokine receptors. Mol Cell Biol 13: 1788–1795.

    Article  CAS  Google Scholar 

  • Murray AW . (2004). Recycling the cell cycle: cyclins revisited. Cell 116: 221–234.

    Article  CAS  Google Scholar 

  • Naderi S, Gutzkow KB, Lahne HU, Lefdal S, Ryves WJ, Harwood AJ et al. (2004). cAMP-induced degradation of cyclin D3 through association with GSK-3beta. J Cell Sci 117: 3769–3783.

    Article  CAS  Google Scholar 

  • Okabe H, Lee SH, Phuchareon J, Albertson DG, McCormick F, Tetsu O . (2006). A critical role for FBXW8 and MAPK in cyclin D1 degradation and cancer cell proliferation. PLoS ONE 1: e128.

    Article  Google Scholar 

  • Parada Y, Banerji L, Glassford J, Lea NC, Collado M, Rivas C et al. (2001). BCR-ABL and interleukin 3 promote haematopoietic cell proliferation and survival through modulation of cyclin D2 and p27Kip1 expression. J Biol Chem 276: 23572–23580.

    Article  CAS  Google Scholar 

  • Radosevic N, Delmer A, Tang R, Marie JP, Ajchenbaum-Cymbalista F . (2001). Cell cycle regulatory protein expression in fresh acute myeloid leukemia cells and after drug exposure. Leukemia 15: 559–566.

    Article  CAS  Google Scholar 

  • Shao J, Sheng H, DuBois RN, Beauchamp RD . (2000). Oncogenic Ras-mediated cell growth arrest and apoptosis are associated with increased ubiquitin-dependent cyclin D1 degradation. J Biol Chem 275: 22916–22924.

    Article  CAS  Google Scholar 

  • Sherr CJ, Roberts JM . (1999). CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev 13: 1501–1512.

    Article  CAS  Google Scholar 

  • Yang K, Guo Y, Stacey WC, Harwalkar J, Fretthold J, Hitomi M et al. (2006). Glycogen synthase kinase 3 has a limited role in cell cycle regulation of cyclin D1 levels. BMC Cell Biol 7: 33.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Drs Roger J Davis and Masakazu Hattori for the generous gifts of experimental materials. This study was supported in part by grants from Ministry of Education, Culture, Sports, Science and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O Miura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kida, A., Kakihana, K., Kotani, S. et al. Glycogen synthase kinase-3β and p38 phosphorylate cyclin D2 on Thr280 to trigger its ubiquitin/proteasome-dependent degradation in hematopoietic cells. Oncogene 26, 6630–6640 (2007). https://doi.org/10.1038/sj.onc.1210490

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210490

Keywords

This article is cited by

Search

Quick links