Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Class IIa histone deacetylases: regulating the regulators

Abstract

In the last decade, the identification of enzymes that regulate acetylation of histones and nonhistone proteins has revealed the key role of dynamic acetylation and deacetylation in various cellular processes. Mammalian histone deacetylases (HDACs), which catalyse the removal of acetyl groups from lysine residues, are grouped into three classes, on the basis of similarity to yeast counterparts. An abundance of experimental evidence has established class IIa HDACs as crucial transcriptional regulators of various developmental and differentiation processes. In the past 5 years, a tremendous effort has been dedicated to characterizing the regulation of these enzymes. In this review, we summarize the latest discoveries in the field and discuss the molecular and structural determinants of class IIa HDACs regulation. Finally, we emphasize that comprehension of the mechanisms underlying class IIa HDAC functions is essential for potential therapeutic applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Aguilera C, Hoya-Arias R, Haegeman G, Espinosa L, Bigas A . (2004). Recruitment of IkappaBalpha to the hes1 promoter is associated with transcriptional repression. Proc Natl Acad Sci USA 101: 16537–16542.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allfrey VG, Faulkner R, Mirsky AE . (1964). Acetylation and methylation of histones and their possible role in the regulation of Rna synthesis. Proc Natl Acad Sci USA 51: 786–794.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Arnold MA, Kim Y, Czubryt MP, Phan D, McAnally J, Qi X et al. (2007). MEF2C transcription factor controls chondrocyte hypertrophy and bone development. Dev Cell 12: 377–389.

    CAS  PubMed  Google Scholar 

  • Backs J, Olson EN . (2006). Control of cardiac growth by histone acetylation/deacetylation. Circ Res 98: 15–24.

    CAS  PubMed  Google Scholar 

  • Backs J, Song K, Bezprozvannaya S, Chang S, Olson EN . (2006). CaM kinase II selectively signals to histone deacetylase 4 during cardiomyocyte hypertrophy. J Clin Invest 116: 1853–1864.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bakin RE, Jung MO . (2004). Cytoplasmic sequestration of HDAC7 from mitochondrial and nuclear compartments upon initiation of apoptosis. J Biol Chem 279: 51218–51225.

    CAS  PubMed  Google Scholar 

  • Basile V, Mantovani R, Imbriano C . (2006). DNA damage promotes histone deacetylase 4 nuclear localization and repression of G2/M promoters, via p53 C-terminal lysines. J Biol Chem 281: 2347–2357.

    CAS  PubMed  Google Scholar 

  • Berdeaux R, Goebel N, Banaszynski L, Takemori H, Wandless T, Shelton GD et al. (2007). SIK1 is a class II HDAC kinase that promotes survival of skeletal myocytes. Nat Med 13: 597–603.

    CAS  PubMed  Google Scholar 

  • Berger I, Bieniossek C, Schaffitzel C, Hassler M, Santelli E, Richmond TJ . (2003). Direct interaction of Ca2+/calmodulin inhibits histone deacetylase 5 repressor core binding to myocyte enhancer factor 2. J Biol Chem 278: 17625–17635.

    CAS  PubMed  Google Scholar 

  • Bertos NR, Wang AH, Yang XJ . (2001). Class II histone deacetylases: structure, function, and regulation. Biochem Cell Biol 79: 243–252.

    CAS  PubMed  Google Scholar 

  • Black BL, Olson EN . (1998). Transcriptional control of muscle development by myocyte enhancer factor-2 (MEF2) proteins. Annu Rev Cell Dev Biol 14: 167–196.

    CAS  PubMed  Google Scholar 

  • Blander G, Guarente L . (2004). The Sir2 family of protein deacetylases. Annu Rev Biochem 73: 417–435.

    CAS  PubMed  Google Scholar 

  • Bolden JE, Peart MJ, Johnstone RW . (2006). Anticancer activities of histone deacetylase inhibitors. Nat Rev Drug Discov 5: 769–784.

    Article  CAS  PubMed  Google Scholar 

  • Bolger TA, Yao TP . (2005). Intracellular trafficking of histone deacetylase 4 regulates neuronal cell death. J Neurosci 25: 9544–9553.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Borghi S, Molinari S, Razzini G, Parise F, Battini R, Ferrari S . (2001). The nuclear localization domain of the MEF2 family of transcription factors shows member-specific features and mediates the nuclear import of histone deacetylase 4. J Cell Sci 114: 4477–4483.

    CAS  PubMed  Google Scholar 

  • Bryant H, Farrell PJ . (2002). Signal transduction and transcription factor modification during reactivation of Epstein–Barr virus from latency. J Virol 76: 10290–10298.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Camins A, Verdaguer E, Folch J, Canudas AM, Pallas M . (2006). The role of CDK5/P25 formation/inhibition in neurodegeneration. Drug News Perspect 19: 453–460.

    CAS  PubMed  Google Scholar 

  • Castet A, Boulahtouf A, Versini G, Bonnet S, Augereau P, Vignon F et al. (2004). Multiple domains of the receptor-interacting protein 140 contribute to transcription inhibition. Nucleic Acids Res 32: 1957–1966.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chakraborty S, Reineke EL, Lam M, Li X, Liu Y, Gao C et al. (2006). Alpha-actinin 4 potentiates myocyte enhancer factor-2 transcription activity by antagonizing histone deacetylase 7. J Biol Chem 281: 35070–35080.

    CAS  PubMed  Google Scholar 

  • Chan JK, Sun L, Yang XJ, Zhu G, Wu Z . (2003). Functional characterization of an amino-terminal region of HDAC4 that possesses MEF2 binding and transcriptional repressive activity. J Biol Chem 278: 23515–23521.

    CAS  PubMed  Google Scholar 

  • Chang S, Bezprozvannaya S, Li S, Olson EN . (2005). An expression screen reveals modulators of class II histone deacetylase phosphorylation. Proc Natl Acad Sci USA 102: 8120–8125.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chang S, McKinsey TA, Zhang CL, Richardson JA, Hill JA, Olson EN . (2004). Histone deacetylases 5 and 9 govern responsiveness of the heart to a subset of stress signals and play redundant roles in heart development. Mol Cell Biol 24: 8467–8476.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chang S, Young BD, Li S, Qi X, Richardson JA, Olson EN . (2006). Histone deacetylase 7 maintains vascular integrity by repressing matrix metalloproteinase 10. Cell 126: 321–334.

    CAS  PubMed  Google Scholar 

  • Chawla S, Vanhoutte P, Arnold FJ, Huang CL, Bading H . (2003). Neuronal activity-dependent nucleocytoplasmic shuttling of HDAC4 and HDAC5. J Neurochem 85: 151–159.

    CAS  PubMed  Google Scholar 

  • Czubryt MP, Olson EN . (2004). Balancing contractility and energy production: the role of myocyte enhancer factor 2 (MEF2) in cardiac hypertrophy. Recent Prog Horm Res 59: 105–124.

    CAS  PubMed  Google Scholar 

  • Dai YS, Xu J, Molkentin JD . (2005). The DnaJ-related factor Mrj interacts with nuclear factor of activated T cells c3 and mediates transcriptional repression through class II histone deacetylase recruitment. Mol Cell Biol 25: 9936–9948.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Davis FJ, Gupta M, Camoretti-Mercado B, Schwartz RJ, Gupta MP . (2003). Calcium/calmodulin-dependent protein kinase activates serum response factor transcription activity by its dissociation from histone deacetylase, HDAC4: implications in cardiac muscle gene regulation during hypertrophy. J Biol Chem 278: 20047–20058.

    CAS  PubMed  Google Scholar 

  • de Ruijter AJ, van Gennip AH, Caron HN, Kemp S, van Kuilenburg AB . (2003). Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem J 370: 737–749.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Deng X, Ewton DZ, Mercer SE, Friedman E . (2005). Mirk/dyrk1B decreases the nuclear accumulation of class II histone deacetylases during skeletal muscle differentiation. J Biol Chem 280: 4894–4905.

    CAS  PubMed  Google Scholar 

  • Dequiedt F, Kasler H, Fischle W, Kiermer V, Weinstein M, Herndier BG et al. (2003). HDAC7, a thymus-specific class II histone deacetylase, regulates Nur77 transcription and TCR-mediated apoptosis. Immunity 18: 687–698.

    CAS  PubMed  Google Scholar 

  • Dequiedt F, Martin M, Von Blume J, Vertommen D, Lecomte E, Mari N et al. (2006). New role for hPar-1 kinases EMK and C-TAK1 in regulating localization and activity of class IIa histone deacetylases. Mol Cell Biol 26: 7086–7102.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dequiedt F, Van Lint J, Lecomte E, Van Duppen V, Seufferlein T, Vandenheede JR et al. (2005). Phosphorylation of histone deacetylase 7 by protein kinase D mediates T cell receptor-induced Nur77 expression and apoptosis. J Exp Med 201: 793–804.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dougherty MK, Morrison DK . (2004). Unlocking the code of 14-3-3. J Cell Sci 117: 1875–1884.

    CAS  PubMed  Google Scholar 

  • Downes M, Ordentlich P, Kao HY, Alvarez JG, Evans RM . (2000). Identification of a nuclear domain with deacetylase activity. Proc Natl Acad Sci USA 97: 10330–10335.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dressel U, Bailey PJ, Wang SC, Downes M, Evans RM, Muscat GE . (2001). A dynamic role for HDAC7 in MEF2-mediated muscle differentiation. J Biol Chem 276: 17007–17013.

    CAS  PubMed  Google Scholar 

  • Ekwall K . (2005). Genome-wide analysis of HDAC function. Trends Genet 21: 608–615.

    CAS  PubMed  Google Scholar 

  • Ellis JJ, Valencia TG, Zeng H, Roberts LD, Deaton RA, Grant SR . (2003). CaM kinase II deltaC phosphorylation of 14-3-3beta in vascular smooth muscle cells: activation of class II HDAC repression. Mol Cell Biochem 242: 153–161.

    CAS  PubMed  Google Scholar 

  • Finnin MS, Donigian JR, Cohen A, Richon VM, Rifkind RA, Marks PA et al. (1999). Structures of a histone deacetylase homologue bound to the TSA and SAHA inhibitors. Nature 401: 188–193.

    CAS  PubMed  Google Scholar 

  • Fischer DD, Cai R, Bhatia U, Asselbergs FAM, Song C, Terry R et al. (2002). Isolation and characterization of a novel class II histone deacetylase, HDAC10. J Biol Chem 277: 6656–6666.

    CAS  PubMed  Google Scholar 

  • Fischle W, Dequiedt F, Fillion M, Hendzel MJ, Voelter W, Verdin E . (2001). Human HDAC7 histone deacetylase activity is associated with HDAC3 in vivo. J Biol Chem 276: 35826–35835.

    CAS  PubMed  Google Scholar 

  • Fischle W, Dequiedt F, Hendzel MJ, Guenther MG, Lazar MA, Voelter W et al. (2002). Enzymatic activity associated with class II HDACs is dependent on a multiprotein complex containing HDAC3 and SMRT/N-CoR. Mol Cell 9: 45–57.

    CAS  PubMed  Google Scholar 

  • Fischle W, Emiliani S, Hendzel MJ, Nagase T, Nomura N, Voelter W et al. (1999). A new family of human histone deacetylases related to Saccharomyces cerevisiae HDA1p. J Biol Chem 274: 11713–11720.

    CAS  PubMed  Google Scholar 

  • Franco PJ, Li G, Wei LN . (2003). Interaction of nuclear receptor zinc finger DNA binding domains with histone deacetylase. Mol Cell Endocrinol 206: 1–12.

    CAS  PubMed  Google Scholar 

  • Fu H, Subramanian RR, Masters SC . (2000). 14-3-3 proteins: structure, function, and regulation. Annu Rev Pharmacol Toxicol 40: 617–647.

    CAS  PubMed  Google Scholar 

  • Gao C, Li X, Lam M, Liu Y, Chakraborty S, Kao HY . (2006). CRM1 mediates nuclear export of HDAC7 independently of HDAC7 phosphorylation and association with 14-3-3s. FEBS Lett 580: 5096–5104.

    CAS  PubMed  Google Scholar 

  • Ghisletti S, Huang W, Ogawa S, Pascual G, Lin ME, Willson TM et al. (2007). Parallel SUMOylation-dependent pathways mediate gene- and signal-specific transrepression by LXRs and PPARgamma. Mol Cell 25: 57–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Glaser KB, Staver MJ, Waring JF, Stender J, Ulrich RG, Davidsen SK . (2003). Gene expression profiling of multiple histone deacetylase (HDAC) inhibitors: defining a common gene set produced by HDAC inhibition in T24 and MDA carcinoma cell lines. Mol Cancer Ther 2: 151–163.

    CAS  PubMed  Google Scholar 

  • Glozak MA, Sengupta N, Zhang X, Seto E . (2005). Acetylation and deacetylation of non-histone proteins. Gene 363: 15–23.

    CAS  PubMed  Google Scholar 

  • Gregoire S, Tremblay AM, Xiao L, Yang Q, Ma K, Nie J et al. (2006). Control of MEF2 transcriptional activity by coordinated phosphorylation and sumoylation. J Biol Chem 281: 4423–4433.

    CAS  PubMed  Google Scholar 

  • Gregoire S, Yang X-J . (2005). Association with class IIa histone deacetylases upregulates the sumoylation of MEF2 transcription factors. Mol Cell Biol 25: 2273–2287.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gregoretti IV, Lee YM, Goodson HV . (2004). Molecular evolution of the histone deacetylase family: functional implications of phylogenetic analysis. J Mol Biol 338: 17–31.

    CAS  PubMed  Google Scholar 

  • Grozinger CM, Hassig CA, Schreiber SL . (1999). Three proteins define a class of human histone deacetylases related to yeast Hda1p. Proc Natl Acad Sci USA 96: 4868–4873.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grozinger CM, Schreiber SL . (2000). Regulation of histone deacetylase 4 and 5 and transcriptional activity by 14-3-3-dependent cellular localization. Proc Natl Acad Sci USA 97: 7835–7840.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grozinger CM, Schreiber SL . (2002). Deacetylase enzymes: biological functions and the use of small-molecule inhibitors. Chem Biol 9: 3–16.

    CAS  PubMed  Google Scholar 

  • Guan Z, Giustetto M, Lomvardas S, Kim JH, Miniaci MC, Schwartz JH et al. (2002). Integration of long-term-memory-related synaptic plasticity involves bidirectional regulation of gene expression and chromatin structure. Cell 111: 483–493.

    CAS  PubMed  Google Scholar 

  • Guardiola AR, Yao T-P . (2002). Molecular cloning and characterization of a novel histone deacetylase HDAC10. J Biol Chem 277: 3350–3356.

    CAS  PubMed  Google Scholar 

  • Guo L, Han A, Bates DL, Cao J, Chen L . (2007). Crystal structure of a conserved N-terminal domain of histone deacetylase 4 reveals functional insights into glutamine-rich domains. Proc Natl Acad Sci USA 104: 4297–4302.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Haberland M, Arnold MA, McAnally J, Phan D, Kim Y, Olson EN . (2007). Regulation of HDAC9 gene expression by MEF2 establishes a negative-feedback loop in the transcriptional circuitry of muscle differentiation. Mol Cell Biol 27: 518–525.

    CAS  PubMed  Google Scholar 

  • Haigis MC, Guarente LP . (2006). Mammalian sirtuins – emerging roles in physiology, aging, and calorie restriction. Genes Dev 20: 2913–2921.

    CAS  PubMed  Google Scholar 

  • Halkidou K, Cook S, Leung HY, Neal DE, Robson CN . (2004). Nuclear accumulation of histone deacetylase 4 (HDAC4) coincides with the loss of androgen sensitivity in hormone refractory cancer of the prostate. Eur Urol 45: 382–389; author reply 389.

    CAS  PubMed  Google Scholar 

  • Han A, He J, Wu Y, Liu JO, Chen L . (2005). Mechanism of recruitment of class II histone deacetylases by myocyte enhancer factor-2. J Mol Biol 345: 91–102.

    CAS  PubMed  Google Scholar 

  • Harrison BC, Kim MS, van Rooij E, Plato CF, Papst PJ, Vega RB et al. (2006). Regulation of cardiac stress signaling by protein kinase d1. Mol Cell Biol 26: 3875–3888.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Harrison BC, Roberts CR, Hood DB, Sweeney M, Gould JM, Bush EW et al. (2004). The CRM1 nuclear export receptor controls pathological cardiac gene expression. Mol Cell Biol 24: 10636–10649.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hassig CA, Tong JK, Fleischer TC, Owa T, Grable PG, Ayer DE et al. (1998). A role for histone deacetylase activity in HDAC1-mediated transcriptional repression. Proc Natl Acad Sci USA 95: 3519–3524.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Heidenreich KA, Linseman DA . (2004). Myocyte enhancer factor-2 transcription factors in neuronal differentiation and survival. Mol Neurobiol 29: 155–166.

    CAS  PubMed  Google Scholar 

  • Hogan PG, Chen L, Nardone J, Rao A . (2003). Transcriptional regulation by calcium, calcineurin, and NFAT. Genes Dev 17: 2205–2232.

    CAS  PubMed  Google Scholar 

  • Hu E, Chen Z, Fredrickson T, Zhu Y, Kirkpatrick R, Zhang G-F et al. (2000). Cloning and characterization of a novel human class I histone deacetylase that functions as a transcription repressor. J Biol Chem 275: 15254–15264.

    CAS  PubMed  Google Scholar 

  • Huang EY, Zhang J, Miska EA, Guenther MG, Kouzarides T, Lazar MA . (2000). Nuclear receptor corepressors partner with class II histone deacetylases in a Sin3-independent repression pathway. Genes Dev 14: 45–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huynh KD, Fischle W, Verdin E, Bardwell VJ . (2000). BCoR, a novel corepressor involved in BCL-6 repression. Genes Dev 14: 1810–1823.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huynh QK, McKinsey TA . (2006). Protein kinase D directly phosphorylates histone deacetylase 5 via a random sequential kinetic mechanism. Arch Biochem Biophys 450: 141–148.

    CAS  PubMed  Google Scholar 

  • Imbriano C, Gurtner A, Cocchiarella F, Di Agostino S, Basile V, Gostissa M et al. (2005). Direct p53 transcriptional repression: in vivo analysis of CCAAT-containing G2/M promoters. Mol Cell Biol 25: 3737–3751.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jeon EJ, Lee KY, Choi NS, Lee MH, Kim HN, Jin YH et al. (2006). Bone morphogenetic protein-2 stimulates Runx2 acetylation. J Biol Chem 281: 16502–16511.

    CAS  PubMed  Google Scholar 

  • Jeong BC, Hong CY, Chattopadhyay S, Park JH, Gong EY, Kim HJ et al. (2004). Androgen receptor corepressor-19 kDa (ARR19), a leucine-rich protein that represses the transcriptional activity of androgen receptor through recruitment of histone deacetylase. Mol Endocrinol 18: 13–25.

    CAS  PubMed  Google Scholar 

  • Jin YH, Jeon EJ, Li QL, Lee YH, Choi JK, Kim WJ et al. (2004). Transforming growth factor-beta stimulates p300-dependent RUNX3 acetylation, which inhibits ubiquitination-mediated degradation. J Biol Chem 279: 29409–29417.

    CAS  PubMed  Google Scholar 

  • Kadoglou NP, Liapis CD . (2004). Matrix metalloproteinases: contribution to pathogenesis, diagnosis, surveillance and treatment of abdominal aortic aneurysms. Curr Med Res Opin 20: 419–432.

    CAS  PubMed  Google Scholar 

  • Kang JS, Alliston T, Delston R, Derynck R . (2005). Repression of Runx2 function by TGF-beta through recruitment of class II histone deacetylases by Smad3. EMBO J 24: 2543–2555.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kao GD, McKenna WG, Guenther MG, Muschel RJ, Lazar MA, Yen TJ . (2003). Histone deacetylase 4 interacts with 53BP1 to mediate the DNA damage response. J Cell Biol 160: 1017–1027.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kao H-Y, Downes M, Ordentlich P, Evans RM . (2000). Isolation of a novel histone deacetylase reveals that class I and class II deacetylases promote SMRT-mediated repression. Genes Dev 14: 55–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kao H-Y, Lee C-H, Komarov A, Han CC, Evans RM . (2002). Isolation and characterization of mammalian HDAC10, a novel histone deacetylase. J Biol Chem 277: 187–193.

    CAS  PubMed  Google Scholar 

  • Kao H-Y, Verdel A, Tsai C-C, Simon C, Juguilon H, Khochbin S . (2001). Mechanism for nucleocytoplasmic shuttling of histone deacetylase 7. J Biol Chem 276: 47496–47507.

    CAS  PubMed  Google Scholar 

  • Karvonen U, Janne OA, Palvimo JJ . (2006). Androgen receptor regulates nuclear trafficking and nuclear domain residency of corepressor HDAC7 in a ligand-dependent fashion. Exp Cell Res 312: 3165–3183.

    CAS  PubMed  Google Scholar 

  • Kato H, Tamamizu-Kato S, Shibasaki F . (2004). Histone deacetylase 7 associates with hypoxia-inducible factor 1alpha and increases transcriptional activity. J Biol Chem 279: 41966–41974.

    CAS  PubMed  Google Scholar 

  • Kirsh O, Seeler JS, Pichler A, Gast A, Muller S, Miska E et al. (2002). The SUMO E3 ligase RanBP2 promotes modification of the HDAC4 deacetylase. EMBO J 21: 2682–2691.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Komori T, Yagi H, Nomura S, Yamaguchi A, Sasaki K, Deguchi K et al. (1997). Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell 89: 755–764.

    CAS  PubMed  Google Scholar 

  • Kouzarides T . (2000). Acetylation: a regulatory modification to rival phosphorylation? EMBO J 19: 1176–1179.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kurtev V, Margueron R, Kroboth K, Ogris E, Cavailles V, Seiser C . (2004). Transcriptional regulation by the repressor of estrogen receptor activity via recruitment of histone deacetylases. J Biol Chem 279: 24834–24843.

    CAS  PubMed  Google Scholar 

  • Lee HJ, Chun M, Kandror KV . (2001). Tip60 and HDAC7 interact with the endothelin receptor a and may be involved in downstream signaling. J Biol Chem 276: 16597–16600.

    CAS  PubMed  Google Scholar 

  • Legube G, Trouche D . (2003). Regulating histone acetyltransferases and deacetylases. EMBO Rep 4: 944–947.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lemercier C, Brocard MP, Puvion-Dutilleul F, Kao HY, Albagli O, Khochbin S . (2002). Class II histone deacetylases are directly recruited by BCL6 transcriptional repressor. J Biol Chem 277: 22045–22052.

    CAS  PubMed  Google Scholar 

  • Lemercier C, Verdel A, Galloo B, Curtet S, Brocard MP, Khochbin S . (2000). mHDA1/HDAC5 histone deacetylase interacts with and represses MEF2A transcriptional activity. J Biol Chem 275: 15594–15599.

    CAS  PubMed  Google Scholar 

  • Li B, Samanta A, Song X, Iacono KT, Bembas K, Tao R et al. (2007). FOXP3 interactions with histone acetyltransferase and class II histone deacetylases are required for repression. Proc Natl Acad Sci USA 104: 4571–4576.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Song S, Liu Y, Ko SH, Kao HY . (2004). Phosphorylation of the histone deacetylase 7 modulates its stability and association with 14-3-3 proteins. J Biol Chem 279: 34201–34208.

    CAS  PubMed  Google Scholar 

  • Lin Q, Lu J, Yanagisawa H, Webb R, Lyons GE, Richardson JA et al. (1998). Requirement of the MADS-box transcription factor MEF2C for vascular development. Development 125: 4565–4574.

    CAS  PubMed  Google Scholar 

  • Linseman DA, Bartley CM, Le SS, Laessig TA, Bouchard RJ, Meintzer MK et al. (2003). Inactivation of the myocyte enhancer factor-2 repressor histone deacetylase-5 by endogenous Ca2//calmodulin-dependent kinase II promotes depolarization-mediated cerebellar granule neuron survival. J Biol Chem 278: 41472–41481.

    CAS  PubMed  Google Scholar 

  • Liu F, Dowling M, Yang XJ, Kao GD . (2004). Caspase-mediated specific cleavage of human histone deacetylase 4. J Biol Chem 279: 34537–34546.

    CAS  PubMed  Google Scholar 

  • Liu Y, Randall WR, Schneider MF . (2005). Activity-dependent and -independent nuclear fluxes of HDAC4 mediated by different kinases in adult skeletal muscle. J Cell Biol 168: 887–897.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lomonte P, Thomas J, Texier P, Caron C, Khochbin S, Epstein AL . (2004). Functional interaction between class II histone deacetylases and ICP0 of herpes simplex virus type 1. J Virol 78: 6744–6757.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lu J, McKinsey TA, Nicol RL, Olson EN . (2000a). Signal-dependent activation of the MEF2 transcription factor by dissociation from histone deacetylases. Proc Natl Acad Sci USA 97: 4070–4075.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lu J, McKinsey TA, Zhang CL, Olson EN . (2000b). Regulation of skeletal myogenesis by association of the MEF2 transcription factor with class II histone deacetylases. Mol Cell 6: 233–244.

    CAS  PubMed  Google Scholar 

  • Mackintosh C . (2004). Dynamic interactions between 14-3-3 proteins and phosphoproteins regulate diverse cellular processes. Biochem J 381: 329–342.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marks PA, Miller T, Richon VM . (2003). Histone deacetylases. Curr Opin Pharmacol 3: 344–351.

    CAS  PubMed  Google Scholar 

  • Marmorstein R . (2004). Structure and chemistry of the Sir2 family of NAD+-dependent histone/protein deactylases. Biochem Soc Trans 32: 904–909.

    CAS  PubMed  Google Scholar 

  • Martin M, Potente M, Janssens V, Vertommen D, Twizere JC, Rider MH et al. Protein phosphatase 2A controls the subcellular distribution and biological activity of class Iia histone deacetylases. (Submitted for publication).

  • Matthews SA, Liu P, Spitaler M, Olson EN, McKinsey TA, Cantrell DA et al. (2006). Essential role for protein kinase D family kinases in the regulation of class II histone deacetylases in B lymphocytes. Mol Cell Biol 26: 1569–1577.

    CAS  PubMed  PubMed Central  Google Scholar 

  • McKinsey TA . (2007). Derepression of pathological cardiac genes by members of the CaM kinase superfamily. Cardiovasc Res 73: 667–677.

    CAS  PubMed  Google Scholar 

  • McKinsey TA, Kuwahara K, Bezprozvannaya S, Olson EN . (2006). Class II histone deacetylases confer signal responsiveness to the ankyrin-repeat proteins ANKRA2 and RFXANK. Mol Biol Cell 17: 438–447.

    CAS  PubMed  PubMed Central  Google Scholar 

  • McKinsey TA, Zhang CL, Lu J, Olson EN . (2000a). Signal-dependent nuclear export of a histone deacetylase regulates muscle differentiation. Nature 408: 106–111.

    CAS  PubMed  PubMed Central  Google Scholar 

  • McKinsey TA, Zhang CL, Olson EN . (2000b). Activation of the myocyte enhancer factor-2 transcription factor by calcium/calmodulin-dependent protein kinase-stimulated binding of 14-3-3 to histone deacetylase 5. Proc Natl Acad Sci USA 97: 14400–14405.

    CAS  PubMed  PubMed Central  Google Scholar 

  • McKinsey TA, Zhang CL, Olson EN . (2001a). Control of muscle development by dueling HATs and HDACs. Curr Opin Genet Dev 11: 497–504.

    CAS  PubMed  Google Scholar 

  • McKinsey TA, Zhang CL, Olson EN . (2001b). Identification of a signal-responsive nuclear export sequence in class II histone deacetylases. Mol Cell Biol 21: 6312–6321.

    CAS  PubMed  PubMed Central  Google Scholar 

  • McKinsey TA, Zhang CL, Olson EN . (2002). MEF2: a calcium-dependent regulator of cell division, differentiation and death. Trends Biochem Sci 27: 40–47.

    CAS  PubMed  Google Scholar 

  • Miska EA, Karlsson C, Langley E, Nielsen SJ, Pines J, Kouzarides T . (1999). HDAC4 deacetylase associates with and represses the MEF2 transcription factor. EMBO J 18: 5099–5107.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mundlos S, Olsen BR . (1997). Heritable diseases of the skeleton. Part I: molecular insights into skeletal development-transcription factors and signaling pathways. FASEB J 11: 125–132.

    CAS  PubMed  Google Scholar 

  • Muslin AJ, Tanner JW, Allen PM, Shaw AS . (1996). Interaction of 14-3-3 with signaling proteins is mediated by the recognition of phosphoserine. Cell 84: 889–897.

    CAS  PubMed  Google Scholar 

  • Nakagawa Y, Kuwahara K, Harada M, Takahashi N, Yasuno S, Adachi Y et al. (2006). Class II HDACs mediate CaMK-dependent signaling to NRSF in ventricular myocytes. J Mol Cell Cardiol 41: 1010–1022.

    CAS  PubMed  Google Scholar 

  • Nielsen TK, Hildmann C, Dickmanns A, Schwienhorst A, Ficner R . (2005). Crystal structure of a bacterial class 2 histone deacetylase homologue. J Mol Biol 354: 107–120.

    CAS  PubMed  Google Scholar 

  • North BJ, Verdin E . (2004). Sirtuins: Sir2-related NAD-dependent protein deacetylases. Genome Biol 5: 224.

    PubMed  PubMed Central  Google Scholar 

  • Nusinzon I, Horvath CM . (2005). Histone deacetylases as transcriptional activators? Role reversal in inducible gene regulation. Sci STKE 2005: re11.

    PubMed  Google Scholar 

  • Otto F, Lubbert M, Stock M . (2003). Upstream and downstream targets of RUNX proteins. J Cell Biochem 89: 9–18.

    CAS  PubMed  Google Scholar 

  • Otto F, Thornell AP, Crompton T, Denzel A, Gilmour KC, Rosewell IR et al. (1997). Cbfa1, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development. Cell 89: 765–771.

    CAS  PubMed  Google Scholar 

  • Ozawa Y, Towatari M, Tsuzuki S, Hayakawa F, Maeda T, Miyata Y et al. (2001). Histone deacetylase 3 associates with and represses the transcription factor GATA-2. Blood 98: 2116–2123.

    CAS  PubMed  Google Scholar 

  • Pagan JK, Arnold J, Hanchard KJ, Kumar R, Bruno T, Jones MJ et al. (2007). A novel corepressor, BCOR-L1, represses transcription through an interaction with CTBP. J Biol Chem 282: 15248–15257.

    CAS  PubMed  Google Scholar 

  • Paroni G, Mizzau M, Henderson C, Del Sal G, Schneider C, Brancolini C . (2004). Caspase-dependent regulation of histone deacetylase 4 nuclear-cytoplasmic shuttling promotes apoptosis. Mol Biol Cell 15: 2804–2818.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Parra M, Kasler H, McKinsey TA, Olson EN, Verdin E . (2005). Protein kinase D1 phosphorylates HDAC7 and induces its nuclear export after T-cell receptor activation. J Biol Chem 280: 13762–13770.

    CAS  PubMed  Google Scholar 

  • Parra M, Mahmoudi T, Verdin E . (2007). Myosin phosphatase dephosphorylates HDAC7, controls its nucleocytoplasmic shuttling, and inhibits apoptosis in thymocytes. Genes Dev 21: 638–643.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Petrie K, Guidez F, Howell L, Healy L, Waxman S, Greaves M et al. (2003). The histone deacetylase 9 gene encodes multiple protein isoforms. J Biol Chem 278: 16059–16072.

    CAS  PubMed  Google Scholar 

  • Portal D, Rosendorff A, Kieff E . (2006). Epstein–Barr nuclear antigen leader protein coactivates transcription through interaction with histone deacetylase 4. Proc Natl Acad Sci USA 103: 19278–19283.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Prima V, Gore L, Caires A, Boomer T, Yoshinari M, Imaizumi M et al. (2005). Cloning and functional characterization of MEF2D/DAZAP1 and DAZAP1/MEF2D fusion proteins created by a variant t(1;19)(q23;p13.3) in acute lymphoblastic leukemia. Leukemia 19: 806–813.

    CAS  PubMed  Google Scholar 

  • Puig-Kroger A, Corbi A . (2006). RUNX3: a new player in myeloid gene expression and immune response. J Cell Biochem 98: 744–756.

    CAS  PubMed  Google Scholar 

  • Qian DZ, Kachhap SK, Collis SJ, Verheul HM, Carducci MA, Atadja P et al. (2006). Class II histone deacetylases are associated with VHL-independent regulation of hypoxia-inducible factor 1{alpha}. Cancer Res 66: 8814–8821.

    CAS  PubMed  Google Scholar 

  • Ranieri G, Gasparini G . (2001). Angiogenesis and angiogenesis inhibitors: a new potential anticancer therapeutic strategy. Curr Drug Targets Immune Endocr Metabol Disord 1: 241–253.

    CAS  PubMed  Google Scholar 

  • Rundlett SE, Carmen AA, Kobayashi R, Bavykin S, Turner BM, Grunstein M . (1996). HDA1 and RPD3 are members of distinct yeast histone deacetylase complexes that regulate silencing and transcription. Proc Natl Acad Sci USA 93: 14503–14508.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sarvetnick N, Ohashi PS . (2003). Autoimmunity. Curr Opin Immunol 15: 647–650.

    CAS  PubMed  Google Scholar 

  • Schneider A, Laage R, von Ahsen O, Fischer A, Rossner M, Scheek S et al. (2004). Identification of regulated genes during permanent focal cerebral ischaemia: characterization of the protein kinase 9b5/MARKL1/MARK4. J Neurochem 88: 1114–1126.

    CAS  PubMed  Google Scholar 

  • Seeler JS, Dejean A . (2001). SUMO: of branched proteins and nuclear bodies. Oncogene 20: 7243–7249.

    CAS  PubMed  Google Scholar 

  • Sengupta N, Seto E . (2004). Regulation of histone deacetylase activities. J Cell Biochem 93: 57–67.

    CAS  PubMed  Google Scholar 

  • Shen YH, Godlewski J, Bronisz A, Zhu J, Comb MJ, Avruch J et al. (2003). Significance of 14-3-3 self-dimerization for phosphorylation-dependent target binding. Mol Biol Cell 14: 4721–4733.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shi Y, Sawada J, Sui G, Affar el B, Whetstine JR, Lan F et al. (2003). Coordinated histone modifications mediated by a CtBP co-repressor complex. Nature 422: 735–738.

    CAS  PubMed  Google Scholar 

  • Siggs OM, Makaroff LE, Liston A . (2006). The why and how of thymocyte negative selection. Curr Opin Immunol 18: 175–183.

    CAS  PubMed  Google Scholar 

  • Somoza JR, Skene RJ, Katz BA, Mol C, Ho JD, Jennings AJ et al. (2004). Structural snapshots of human HDAC8 provide insights into the class I histone deacetylases. Structure 12: 1325–1334.

    CAS  PubMed  Google Scholar 

  • Song K, Backs J, McAnally J, Qi X, Gerard RD, Richardson JA et al. (2006). The transcriptional coactivator CAMTA2 stimulates cardiac growth by opposing class II histone deacetylases. Cell 125: 453–466.

    CAS  PubMed  Google Scholar 

  • Sparrow DB, Miska EA, Langley E, Reynaud-Deonauth S, Kotecha S, Towers N et al. (1999). MEF-2 function is modified by a novel co-repressor, MITR. EMBO J 18: 5085–5098.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tatham MH, Jaffray E, Vaughan OA, Desterro JM, Botting CH, Naismith JH et al. (2001). Polymeric chains of SUMO-2 and SUMO-3 are conjugated to protein substrates by SAE1/SAE2 and Ubc9. J Biol Chem 276: 35368–35374.

    CAS  PubMed  Google Scholar 

  • Taunton J, Hassig CA, Schreiber SL . (1996). A mammalian histone deacetylase related to the yeast transcriptional regulator Rpd3p. Science 272: 408–411.

    CAS  PubMed  Google Scholar 

  • Thiagalingam S, Cheng KH, Lee HJ, Mineva N, Thiagalingam A, Ponte JF . (2003). Histone deacetylases: unique players in shaping the epigenetic histone code. Ann NY Acad Sci 983: 84–100.

    CAS  PubMed  Google Scholar 

  • Tong JJ, Liu J, Bertos NR, Yang X-J . (2002). Identification of HDAC10, a novel class II human histone deacetylase containing a leucine-rich domain. Nucleic Acids Res 30: 1114–1123.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tzivion G, Avruch J . (2002). 14-3-3 proteins: active cofactors in cellular regulation by serine/threonine phosphorylation. J Biol Chem 277: 3061–3064.

    CAS  PubMed  Google Scholar 

  • van der Linden AM, Nolan KM, Sengupta P . (2007). KIN-29 SIK regulates chemoreceptor gene expression via an MEF2 transcription factor and a class II HDAC. EMBO J 26: 358–370.

    CAS  PubMed  Google Scholar 

  • Vannini A, Volpari C, Filocamo G, Casavola EC, Brunetti M, Renzoni D et al. (2004). Crystal structure of a eukaryotic zinc-dependent histone deacetylase, human HDAC8, complexed with a hydroxamic acid inhibitor. Proc Natl Acad Sci USA 101: 15064–15069.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vega RB, Harrison BC, Meadows E, Roberts CR, Papst PJ, Olson EN et al. (2004a). Protein kinases C and D mediate agonist-dependent cardiac hypertrophy through nuclear export of histone deacetylase 5. Mol Cell Biol 24: 8374–8385.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vega RB, Matsuda K, Oh J, Barbosa AC, Yang X, Meadows E et al. (2004b). Histone deacetylase 4 controls chondrocyte hypertrophy during skeletogenesis. Cell 119: 555–566.

    CAS  PubMed  Google Scholar 

  • Verdel A, Khochbin S . (1999). Identification of a new family of higher eukaryotic histone deacetylases. Coordinate expression of differentiation-dependent chromatin modifiers. J Biol Chem 274: 2440–2445.

    CAS  PubMed  Google Scholar 

  • Verdin E, Dequiedt F, Fischle W, Frye R, Marshall B, North B . (2004). Measurement of mammalian histone deacetylase activity. Methods Enzymol 377: 180–196.

    CAS  PubMed  Google Scholar 

  • Verdin E, Dequiedt F, Kasler HG . (2003). Class II histone deacetylases: versatile regulators. Trends Genet 19: 286–293.

    CAS  PubMed  Google Scholar 

  • Verma S, Szmitko PE, Anderson TJ . (2004). Endothelial function: ready for prime time? Can J Cardiol 20: 1335–1339.

    PubMed  Google Scholar 

  • Visvikis-Siest S, Marteau JB . (2006). Genetic variants predisposing to cardiovascular disease. Curr Opin Lipidol 17: 139–151.

    CAS  PubMed  Google Scholar 

  • Wang AH, Bertos NR, Vezmar M, Pelletier N, Crosato M, Heng HH et al. (1999). HDAC4, a human histone deacetylase related to yeast HDA1, is a transcriptional corepressor. Mol Cell Biol 19: 7816–7827.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang AH, Gregoire S, Zika E, Xiao L, Li CS, Li H et al. (2005). Identification of the ankyrin repeat proteins ANKRA and RFXANK as novel partners of class IIa histone deacetylases. J Biol Chem 280: 29117–29127.

    CAS  PubMed  Google Scholar 

  • Wang AH, Kruhlak MJ, Wu J, Bertos NR, Vezmar M, Posner BI et al. (2000). Regulation of histone deacetylase 4 by binding of 14-3-3 proteins. Mol Cell Biol 20: 6904–6912.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang AH, Yang XJ . (2001). Histone deacetylase 4 possesses intrinsic nuclear import and export signals. Mol Cell Biol 21: 5992–6005.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J-W, Imai Y, Lu B . (2007). Activation of PAR-1 kinase and stimulation of tau phosphorylation by diverse signals require the tumor suppressor protein LKB1. J Neurosci 27: 574–581.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Q . (2005). Advances in the genetic basis of coronary artery disease. Curr Atheroscler Rep 7: 235–241.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Watamoto K, Towatari M, Ozawa Y, Miyata Y, Okamoto M, Abe A et al. (2003). Altered interaction of HDAC5 with GATA-1 during MEL cell differentiation. Oncogene 22: 9176–9184.

    CAS  PubMed  Google Scholar 

  • Woronicz JD, Calnan B, Ngo V, Winoto A . (1994). Requirement for the orphan steroid receptor Nur77 in apoptosis of T-cell hybridomas. Nature 367: 277–281.

    CAS  PubMed  Google Scholar 

  • Woronicz JD, Lina A, Calnan BJ, Szychowski S, Cheng L, Winoto A . (1995). Regulation of the Nur77 orphan steroid receptor in activation-induced apoptosis. Mol Cell Biol 15: 6364–6376.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao H, Chung J, Kao HY, Yang YC . (2003). Tip60 is a co-repressor for STAT3. J Biol Chem 278: 11197–11204.

    CAS  PubMed  Google Scholar 

  • Xing W, Zhang TC, Cao D, Wang Z, Antos CL, Li S et al. (2006). Myocardin induces cardiomyocyte hypertrophy. Circ Res 98: 1089–1097.

    CAS  PubMed  Google Scholar 

  • Yaffe MB . (2002). How do 14-3-3 proteins work? Gatekeeper phosphorylation and the molecular anvil hypothesis. FEBS Lett 513: 53–57.

    CAS  PubMed  Google Scholar 

  • Yang XJ . (2005). Multisite protein modification and intramolecular signaling. Oncogene 24: 1653–1662.

    CAS  PubMed  Google Scholar 

  • Yang XJ, Gregoire S . (2005). Class II histone deacetylases: from sequence to function, regulation, and clinical implication. Mol Cell Biol 25: 2873–2884.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang XJ, Seto E . (2003). Collaborative spirit of histone deacetylases in regulating chromatin structure and gene expression. Curr Opin Genet Dev 13: 143–153.

    CAS  PubMed  Google Scholar 

  • Youn H-D, Grozinger CM, Liu JO . (2000). Calcium regulates transcriptional repression of myocyte enhancer factor 2 by histone deacetylase 4. J Biol Chem 275: 22563–22567.

    CAS  PubMed  Google Scholar 

  • Yuki Y, Imoto I, Imaizumi M, Hibi S, Kaneko Y, Amagasa T et al. (2004). Identification of a novel fusion gene in a pre-B acute lymphoblastic leukemia with t(1;19)(q23;p13). Cancer Sci 95: 503–507.

    CAS  PubMed  Google Scholar 

  • Zhang A, Yeung PL, Li CW, Tsai SC, Dinh GK, Wu X et al. (2004). Identification of a novel family of ankyrin repeats containing cofactors for p160 nuclear receptor coactivators. J Biol Chem 279: 33799–33805.

    CAS  PubMed  Google Scholar 

  • Zhang CL, McKinsey TA, Chang S, Antos CL, Hill JA, Olson EN . (2002a). Class II histone deacetylases act as signal-responsive repressors of cardiac hypertrophy. Cell 110: 479–488.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang CL, McKinsey TA, Lu J-r, Olson EN . (2001a). Association of COOH-terminal-binding protein (CtBP) and MEF2-interacting transcription repressor (MITR) contributes to transcriptional repression of the MEF2 transcription factor. J Biol Chem 276: 35–39.

    CAS  PubMed  Google Scholar 

  • Zhang CL, McKinsey TA, Olson EN . (2001b). The transcriptional corepressor MITR is a signal-responsive inhibitor of myogenesis. Proc Natl Acad Sci USA 98: 7354–7359.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang CL, McKinsey TA, Olson EN . (2002b). Association of class II histone deacetylases with heterochromatin protein 1: potential role for histone methylation in control of muscle differentiation. Mol Cell Biol 22: 7302–7312.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao X, Sternsdorf T, Bolger TA, Evans RM, Yao T-P . (2005). Regulation of MEF2 by histone deacetylase 4- and SIRT1 deacetylase-mediated lysine modifications. Mol Cell Biol 25: 8456–8464.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou X, Marks PA, Rifkind RA, Richon VM . (2001). Cloning and characterization of a histone deacetylase, HDAC9. Proc Natl Acad Sci USA 98: 10572–10577.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou X, Richon VM, Rifkind RA, Marks PA . (2000a). Identification of a transcriptional repressor related to the noncatalytic domain of histone deacetylases 4 and 5. Proc Natl Acad Sci USA 97: 1056–1061.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou X, Richon VM, Wang AH, Yang XJ, Rifkind RA, Marks PA . (2000b). Histone deacetylase 4 associates with extracellular signal-regulated kinases 1 and 2, and its cellular localization is regulated by oncogenic Ras. Proc Natl Acad Sci USA 97: 14329–14333.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We apologize to those investigators whose work was not cited in this article owing to space limitations. This work was supported by the Belgian National Fund for Scientific Research (FNRS) and the Interuniversity Attraction Poles Programme, Belgian Science Policy (PAI6/28). FD is Research Associate, MM is research fellow and RK is research director of the FNRS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F Dequiedt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martin, M., Kettmann, R. & Dequiedt, F. Class IIa histone deacetylases: regulating the regulators. Oncogene 26, 5450–5467 (2007). https://doi.org/10.1038/sj.onc.1210613

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210613

Keywords

This article is cited by

Search

Quick links