Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Communication
  • Published:

Activation and transposition of endogenous retroviral elements in hypomethylation induced tumors in mice

Abstract

Genomewide DNA hypomethylation is a consistent finding in human tumors, but the importance of this change for human tumorigenesis remains an open question. We have previously reported that mice carrying a hypomorphic allele for the maintenance DNA methyltransferase (Dnmt1chip/−) are hypomethylated and develop thymic lymphomas, demonstrating that genomewide DNA hypomethylation can induce tumors. Hypomethylated cells exhibit inherent chromosomal instability, which is revealed in the lymphomas as a consistent trisomy of chromosome 15. We now report another aspect of the molecular basis for tumor development upon DNA hypomethylation. Seven out of 16 hypomethylation-induced lymphomas were found to contain an intracisternal A particle (IAP) somatic insertion in the middle of the Notch1 genomic locus, leading to generation of an oncogenic form of Notch1 in the tumors. This finding suggests that the molecular basis for hypomethylation-induced tumors in this model involves chromosomal instability events accompanied by activation of endogenous retroviral elements. Our findings validate the proposed role of DNA methylation in suppression of transposable elements in mammalian cells and demonstrate the importance of DNA methylation for normal cell function as well as the potential consequences of spontaneously occurring or chemically induced DNA hypomethylation.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Ansari-Lari MA, Jones SN, Timms KM, Gibbs RA . (1996). Improved ligation-anchored PCR strategy for identification of 5′ ends of transcripts. Biotechniques 21: 34–36, 38.

    Article  CAS  PubMed  Google Scholar 

  • Boeke JD, Stoye JP . (1997). Retroviruses. In: Coffin JM, Hughes SH, Varmus HE (eds), Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY, pp 343–436.

  • Christy RJ, Huang RC . (1988). Functional analysis of the long terminal repeats of intracisternal. A-particle genes:sequences within the U3 region determine both the efficiency and the direction of promoter activity. Mol Cell Biol 8: 1093–1102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Druker R, Bruxner TJ, Lehrbach NJ, Whitelaw E . (2004). Complex patterns of transcription at the insertion site of a retrotransposon in the mouse. Nuc Ac Res 32: 5800–5808.

    Article  CAS  Google Scholar 

  • Eden A, Gaudet F, Waghmare A, Jaenisch R . (2003). Chromosomal instability and tumors promoted by DNA hypomethylation. Science 300: 455.

    Article  CAS  PubMed  Google Scholar 

  • Ehrlich M, Hopkins NE, Jiang G, Dome JS, Yu MC, Woods CB et al. (2003). Satellite DNA hypomethylation in karyotyped Wilms tumors. Cancer Genet Cytogenet 141: 97–105.

    Article  CAS  PubMed  Google Scholar 

  • Ehrlich M . (2002). DNA methylation in cancer: too much, but also too little. Oncogene 21: 5400–5413.

    Article  CAS  PubMed  Google Scholar 

  • Ellisen LW, Bird J, West DC, Soreng AL, Reynolds TC, Smith SD et al. (1991). TAN-1, the human homolog of the Drosophila notch gene, is broken by chromosomal translocations in T lymphoblastic neoplasms. Cell 66: 649–661.

    Article  CAS  PubMed  Google Scholar 

  • Gaudet F, Hodgson JG, Eden A, Jackson-Grusby L, Dausman J, Gray JW et al. (2003). Induction of tumors in mice by genomic hypomethylation. Science 300: 489–492.

    Article  CAS  PubMed  Google Scholar 

  • Girard L, Hanna Z, Beaulieu N, Hoemann CD, Simard C, Kozak CA et al. (1996). Frequent provirus insertional mutagenesis of Notch1 in thymomas of MMTVD/myc transgenic mice suggests a collaboration of c-myc and Notch1 for oncogenesis. Genes Dev 10: 1930–1944.

    Article  CAS  PubMed  Google Scholar 

  • Hoemann CD, Beaulieu N, Girard L, Rebai N, Jolicoeur P . (2000). Two distinct Notch1 mutant alleles are involved in the induction of T-cell leukemia in c-myc transgenic mice. Mol Cell Biol 20: 3831–3842.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jackson-Grusby L, Beard C, Possemato R, Tudor M, Fambrough D, Csankovszki G et al. (2001). Loss of genomic methylation causes p53-dependent apoptosis and epigenetic deregulation. Nat Genet 27: 31–39.

    Article  CAS  PubMed  Google Scholar 

  • Jaenisch R, Bird A . (2003). Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet 33 (Suppl): 245–254.

    Article  CAS  PubMed  Google Scholar 

  • Jaenisch R . (1997). DNA methylation and imprinting: why bother? Trends Genet 13: 323–329.

    Article  CAS  PubMed  Google Scholar 

  • Jahner D, Jaenisch R . (1980). Integration of Moloney leukaemia virus into the germ line of mice: correlation between site of integration and virus activation. Nature 287: 456–458.

    Article  CAS  PubMed  Google Scholar 

  • Jones PA, Baylin SB . (2002). The fundamental role of epigenetic events in cancer. Nat Rev Genet 3: 415–428.

    Article  CAS  PubMed  Google Scholar 

  • Kuff EL . (1990). Intracisternal A particles in mouse neoplasia. Cancer Cells 2: 398–400.

    CAS  PubMed  Google Scholar 

  • Li E, Bestor TH, Jaenisch R . (1992). Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 69: 915–926.

    Article  CAS  PubMed  Google Scholar 

  • Michaud EJ, van Vugt MJ, Bultman SJ, Sweet HO, Davisson MT, Woychik RP . (1994). Differential expression of a new dominant agouti allele (Aiapy) is correlated with methylation state and is influenced by parental lineage. Genes Dev 8: 1463–1472.

    Article  CAS  PubMed  Google Scholar 

  • Nesbit CE, Tersak JM, Prochownik EV . (1999). MYC oncogenes and human neoplastic disease. Oncogene 18: 3004–3016.

    Article  CAS  PubMed  Google Scholar 

  • Rakyan VK, Chong S, Champ ME, Cuthbert PC, Morgan HD, Luu VK et al. (2003). Transgenerational inheritance of epigenetic states at the murine AxinFu allele occurs after maternal and paternal transmission. Proc Natl Acad Sci USA 100: 2538–2543.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schulz WA, Elo JP, Florl AR, Pennanen S, Santourlidis S, Engers R et al. (2002). Genomewide DNA hypomethylation is associated with alterations on chromosome 8 in prostate carcinoma. Genes Chromosomes Cancer 35: 58–65.

    Article  CAS  PubMed  Google Scholar 

  • Suzuki T, Shen H, Akagi K, Morse HC, Malley JD, Naiman DQ et al. (2002). New genes involved in cancer identified by retroviral tagging. Nat Genet 32: 166–174.

    Article  CAS  PubMed  Google Scholar 

  • Tsuda H, Takarabe T, Kanai Y, Fukutomi T, Hirohashi S . (2002). Correlation of DNA hypomethylation at pericentromeric heterochromatin regions of chromosomes 16 and 1 with histological features and chromosomal abnormalities of human breast carcinomas. Am J Pathol 161: 859–866.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walsh CP, Chaillet JR, Bestor TH . (1998). Transcription of IAP endogenous retroviruses is constrained by cytosine methylation. Nat Genet 20: 116–117.

    Article  CAS  PubMed  Google Scholar 

  • Wong N, Lam WC, Lai PB, Pang E, Lau WY, Johnson PJ . (2001). Hypomethylation of chromosome 1 heterochromatin DNA correlates with q-arm copy gain in human hepatocellular carcinoma. Am J Pathol 159: 465–471.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamada Y, Jackson-Grusby L, Linhart H, Meissner A, Eden A, Lin H et al. (2005). Opposing effects of DNA hypomethylation on intestinal and liver carcinogenesis. Proc Natl Acad Sci USA 102: 13580–13585.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoder JA, Walsh CP, Bestor TH . (1997). Cytosine methylation and the ecology of intragenomic parasites. Trends Genet 13: 335–340.

    Article  CAS  PubMed  Google Scholar 

  • Zweidler-McKay PA, Pear WS . (2004). Notch and T cell malignancy. Semin Cancer Biol 14: 329–340.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr M Van-Lohuizen and Dr P Jolicoeur for probes and reagents. This study was supported by the Chief Scientist, Israeli Ministry of Health and by DKFZ-MOS grant #CA-121.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Eden.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Howard, G., Eiges, R., Gaudet, F. et al. Activation and transposition of endogenous retroviral elements in hypomethylation induced tumors in mice. Oncogene 27, 404–408 (2008). https://doi.org/10.1038/sj.onc.1210631

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210631

Keywords

This article is cited by

Search

Quick links