Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Eukaryotic initiation factor 6 selectively regulates Wnt signaling and β-catenin protein synthesis

Abstract

Eukaryotic initiation factor 6 (eIF6), an essential protein important in ribosome biosynthesis and assembly, was identified as an interacting partner of the β-catenin C terminus in the yeast two-hybrid assay. Independent studies identified Drosophila eIF6 (DeIF6) in a genetic screen designed to detect new genes involved in the regulation of the Wnt/Wg (wingless) pathway. Ectopic expression of DeIF6 in wing discs results in a Wg phenotype. Expression of eIF6 in adenomatous polyposis coli (APC)-mutant colon cancer cells, which express high levels of active β-catenin, showed that eIF6 selectively inhibits the Wnt pathway at the level of β-catenin protein independently of proteasomal degradation. Incorporation of radiolabeled amino acids into β-catenin was selectively decreased in cells that overexpressed eIF6. A similar inverse relationship of the two proteins was observed in the APCmin/+ mouse intestine, in which β-catenin levels are very high. Taken together these data reveal a link between eIF6 and Wnt signaling, perhaps at the level of ribosome recycling on β-catenin mRNA.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Arabi A, Wu S, Ridderstrale K, Bierhoff H, Shiue C, Fatyol K et al. (2005). c-Myc associates with ribosomal DNA and activates RNA polymerase I transcription. Nat Cell Biol 7: 303–310.

    Article  CAS  PubMed  Google Scholar 

  • Basu U, Si K, Deng H, Maitra U . (2003). Phosphorylation of mammalian eukaryotic translation initiation factor 6 and its Saccharomyces cerevisiae homologue Tif6p: evidence that phosphorylation of Tif6p regulates its nucleocytoplasmic distribution and is required for yeast cell growth. Mol Cell Biol 23: 6187–6199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Basu U, Si K, Warner JR, Maitra U . (2001). The Saccharomyces cerevisiae TIF6 gene encoding translation initiation factor 6 is required for 60S ribosomal subunit biogenesis. Mol Cell Biol 21: 1453–1462.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bienz M . (2005). beta-Catenin: a pivot between cell adhesion and Wnt signalling. Curr Biol 15: R64–R67.

    Article  CAS  PubMed  Google Scholar 

  • Biffo S, Sanvito F, Costa S, Preve L, Pignatelli R, Spinardi L et al. (1997). Isolation of a novel beta4 integrin-binding protein (p27(BBP)) highly expressed in epithelial cells. J Biol Chem 272: 30314–30321.

    Article  CAS  PubMed  Google Scholar 

  • Brantjes H, Barker N, van EJ, Clevers H . (2002). TCF: Lady Justice casting the final verdict on the outcome of Wnt signalling. Biol Chem 383: 255–261.

    Article  CAS  PubMed  Google Scholar 

  • Ceci M, Gaviraghi C, Gorrini C, Sala LA, Offenhauser N, Marchisio PC et al. (2003). Release of eIF6 (p27BBP) from the 60S subunit allows 80S ribosome assembly. Nature 426: 579–584.

    Article  CAS  PubMed  Google Scholar 

  • Chendrimada TP, Finn KJ, Ji X, Baillat D, Gregory RI, Liebhaber SA et al. (2007). MicroRNA silencing through RISC recruitment of eIF6. Nature 447: 823–828.

    Article  CAS  PubMed  Google Scholar 

  • Clemens MJ . (2004). Targets and mechanisms for the regulation of translation in malignant transformation. Oncogene 23: 3180–3188.

    Article  CAS  PubMed  Google Scholar 

  • Clevers H . (2004). Wnt breakers in colon cancer. Cancer Cell 5: 5–6.

    Article  CAS  PubMed  Google Scholar 

  • Donadini A, Giodini A, Sanvito F, Marchisio PC, Biffo S . (2001). The human ITGB4BP gene is constitutively expressed in vitro, but highly modulated in vivo. Gene 266: 35–43.

    Article  CAS  PubMed  Google Scholar 

  • Fodde R, Smits R, Clevers H . (2001). APC, signal transduction and genetic instability in colorectal cancer. Nat Rev Cancer 1: 55–67.

    Article  CAS  PubMed  Google Scholar 

  • Goss KH, Groden J . (2000). Biology of the adenomatous polyposis coli tumor suppressor. J Clin Oncol 18: 1967–1979.

    Article  CAS  PubMed  Google Scholar 

  • Greaves S, Sanson B, White P, Vincent JP . (1999). A screen for identifying genes interacting with armadillo, the Drosophila homolog of beta-catenin. Genetics 153: 1753–1766.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Haerry TE, Heslip TR, Marsh JL, O'Connor MB . (1997). Defects in glucuronate biosynthesis disrupt Wingless signaling in Drosophila. Development 124: 3055–3064.

    CAS  PubMed  Google Scholar 

  • Harris TJ, Peifer M . (2005). Decisions, decisions: beta-catenin chooses between adhesion and transcription. Trends Cell Biol 15: 234–237.

    Article  CAS  PubMed  Google Scholar 

  • Hart M, Concordet JP, Lassot I, Albert I, del los SR, Durand H et al. (1999). The F-box protein beta-TrCP associates with phosphorylated beta-catenin and regulates its activity in the cell. Curr Biol 9: 207–210.

    Article  CAS  PubMed  Google Scholar 

  • He TC, Chan TA, Vogelstein B, Kinzler KW . (1999). PPARdelta is an APC-regulated target of nonsteroidal anti-inflammatory drugs. Cell 99: 335–345.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He TC, Sparks AB, Rago C, Hermeking H, Zawel L, da Costa LT et al. (1998). Identification of c-MYC as a target of the APC pathway. Science 281: 1509–1512.

    Article  CAS  PubMed  Google Scholar 

  • Kikuchi A . (2003). Tumor formation by genetic mutations in the components of the Wnt signaling pathway. Cancer Sci 94: 225–229.

    Article  CAS  PubMed  Google Scholar 

  • Kitagawa M, Hatakeyama S, Shirane M, Matsumoto M, Ishida N, Hattori K et al. (1999). An F-box protein, FWD1, mediates ubiquitin-dependent proteolysis of beta-catenin. EMBO J 18: 2401–2410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Orford K, Crockett C, Jensen JP, Weissman AM, Byers SW . (1997). Serine phosphorylation-regulated ubiquitination and degradation of beta-catenin. J Biol Chem 272: 24735–24738.

    Article  CAS  PubMed  Google Scholar 

  • Polakis P . (1999). The oncogenic activation of beta-catenin. Curr Opin Genet Dev 9: 15–21.

    Article  CAS  PubMed  Google Scholar 

  • Rubinfeld B, Albert I, Porfiri E, Fiol C, Munemitsu S, Polakis P . (1996). Binding of GSK3beta to the APC-beta-catenin complex and regulation of complex assembly. Science 272: 1023–1026.

    Article  CAS  PubMed  Google Scholar 

  • Ruggero D, Sonenberg N . (2005). The Akt of translational control. Oncogene 24: 7426–7434.

    Article  CAS  PubMed  Google Scholar 

  • Sanvito F, Piatti S, Villa A, Bossi M, Lucchini G, Marchisio PC et al. (1999). The beta4 integrin interactor p27(BBP/eIF6) is an essential nuclear matrix protein involved in 60S ribosomal subunit assembly. J Cell Biol 144: 823–837.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Si K, Maitra U . (1999). The Saccharomyces cerevisiae homologue of mammalian translation initiation factor 6 does not function as a translation initiation factor. Mol Cell Biol 19: 1416–1426.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tetsu O, McCormick F . (1999). Beta-catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature 398: 422–426.

    Article  CAS  PubMed  Google Scholar 

  • Winston JT, Strack P, Beer-Romero P, Chu CY, Elledge SJ, Harper JW . (1999). The SCFbeta-TRCP-ubiquitin ligase complex associates specifically with phosphorylated destruction motifs in IkappaBalpha and beta-catenin and stimulates IkappaBalpha ubiquitination in vitro. Genes Dev 13: 270–283.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wood LC, Ashby MN, Grunfeld C, Feingold KR . (1999). Cloning of murine translation initiation factor 6 and functional analysis of the homologous sequence YPR016c in Saccharomyces cerevisiae. J Biol Chem 274: 11653–11659.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Microscopy and Imaging Facility and the Histopathology and Tissue Shared Resource Core of the Lombardi Comprehensive Cancer Center for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Byers.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ji, Y., Shah, S., Soanes, K. et al. Eukaryotic initiation factor 6 selectively regulates Wnt signaling and β-catenin protein synthesis. Oncogene 27, 755–762 (2008). https://doi.org/10.1038/sj.onc.1210667

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210667

Keywords

This article is cited by

Search

Quick links