Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

PAX-FKHR function as pangenes by simultaneously inducing and inhibiting myogenesis

Abstract

Alveolar rhabdomyosarcomas (ARMS) escape terminal differentiation despite exhibiting a skeletal muscle phenotype. To understand the role of the ARMS-specific PAX-FKHR proteins in myogenesis, we characterized their regulation of MyoD expression and function. Reporter assays show that PAX-FKHR transactivate MyoD expression through its 258 bp core enhancer. Gel-shift assays confirm that PAX-FKHR bind to core enhancer sequences showing similarity to consensus PAX3/PAX-FKHR-binding sites. We show that while PAX3-FKHR activates the expression of endogenous MyoD and myogenin proteins in transduced NIH3T3 fibroblasts, it inhibits them from terminally differentiating as shown by low myogenin and myosin heavy chain expression, and lack of myotube formation. Attenuation of MyoD transcriptional activity via phosphorylation coupled to the lack of cell cycle arrest is the underlying mechanism for the differentiation block. Lastly, we show that fibroblast growth factor receptor signaling likely mediates the inhibition of differentiation by PAX3-FKHR. In a single experimental system we demonstrate that PAX3-FKHR can simultaneously induce myogenesis while preventing its completion. We propose a model whereby PAX-FKHR commit a yet undefined precursor cell to the myogenic lineage while at the same time inhibit terminal differentiation, thereby contributing to ARMS formation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  • Anderson J, Ramsay A, Gould S, Pritchard-Jones K . (2001a). PAX3-FKHR induces morphological change and enhances cellular proliferation and invasion in rhabdomyosarcoma. Am J Pathol 159: 1089–1096.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson MJ, Shelton GD, Cavenee WK, Arden KC . (2001b). Embryonic expression of the tumor-associated PAX3-FKHR fusion protein interferes with the developmental functions of Pax3. Proc Natl Acad Sci USA 98: 1589–1594.

    Article  CAS  PubMed  Google Scholar 

  • Barr FG . (2001). Gene fusions involving PAX and FOX family members in alveolar rhabdomyosarcoma. Oncogene 20: 5736–5746.

    Article  CAS  PubMed  Google Scholar 

  • Bernasconi M, Remppis A, Fredericks WJ, Rauscher III FJ, Schafer BW . (1996). Induction of apoptosis in rhabdomyosarcoma cells through down-regulation of PAX proteins. Proc Natl Acad Sci USA 93: 13164–13169.

    Article  CAS  PubMed  Google Scholar 

  • Chalepakis G, Fritsch R, Fickenscher H, Deutsch U, Goulding M, Gruss P . (1991). The molecular basis of the undulated/Pax-1 mutation. Cell 66: 873–884.

    Article  CAS  PubMed  Google Scholar 

  • Davicioni E, Finckenstein FG, Shahbazian V, Buckley JD, Triche TJ, Anderson MJ . (2006). Identification of a PAX-FKHR gene expression signature that defines molecular classes and determines the prognosis of alveolar rhabdomyosarcomas. Cancer Res 66: 6936–6946.

    Article  CAS  PubMed  Google Scholar 

  • Davis RJ, Barr FG . (1997). Fusion genes resulting from alternative chromosomal translocations are overexpressed by gene-specific mechanisms in alveolar rhabdomyosarcoma. Proc Natl Acad Sci USA 94: 8047–8051.

    Article  CAS  PubMed  Google Scholar 

  • Davis RL, Weintraub H, Lassar AB . (1987). Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell 51: 987–1000.

    Article  CAS  Google Scholar 

  • Epstein JA, Lam P, Jepeal L, Maas RL, Shapiro DN . (1995). Pax3 inhibits myogenic differentiation of cultured myoblast cells. J Biol Chem 270: 11719–11722.

    Article  CAS  PubMed  Google Scholar 

  • Epstein JA, Song B, Lakkis M, Wang C . (1998). Tumor-specific PAX3-FKHR transcription factor, but not PAX3, activates the platelet-derived growth factor alpha receptor. Mol Cell Biol 18: 4118–4130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fredericks WJ, Galili N, Mukhopadhyay S, Rovera G, Bennicelli J, Barr FG et al. (1995). The PAX3-FKHR fusion protein created by the t(2;13) translocation in alveolar rhabdomyosarcomas is a more potent transcriptional activator than PAX3. Mol Cell Biol 15: 1522–1535.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goldhamer DJ, Brunk BP, Faerman A, King A, Shani M, Emerson Jr CP . (1995). Embryonic activation of the myoD gene is regulated by a highly conserved distal control element. Development 121: 637–649.

    CAS  PubMed  Google Scholar 

  • Goldhamer DJ, Faerman A, Shani M, Emerson Jr CP . (1992). Regulatory elements that control the lineage-specific expression of myoD. Science 256: 538–542.

    Article  CAS  PubMed  Google Scholar 

  • Keller C, Arenkiel BR, Coffin CM, El-Bardeesy N, DePinho RA, Capecchi MR . (2004). Alveolar rhabdomyosarcomas in conditional Pax3:Fkhr mice: cooperativity of Ink4a/ARF and Trp53 loss of function. Genes Dev 18: 2614–2626.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan J, Bittner ML, Saal LH, Teichmann U, Azorsa DO, Gooden GC et al. (1999). cDNA microarrays detect activation of a myogenic transcription program by the PAX3-FKHR fusion oncogene. Proc Natl Acad Sci USA 96: 13264–13269.

    Article  CAS  PubMed  Google Scholar 

  • Lam PY, Sublett JE, Hollenbach AD, Roussel MF . (1999). The oncogenic potential of the Pax3-FKHR fusion protein requires the Pax3 homeodomain recognition helix but not the Pax3 paired-box DNA binding domain. Mol Cell Biol 19: 594–601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lang D, Lu MM, Huang L, Engleka KA, Zhang M, Chu EY et al. (2005). Pax3 functions at a nodal point in melanocyte stem cell differentiation. Nature 433: 884–887.

    Article  CAS  PubMed  Google Scholar 

  • Li L, Zhou J, James G, Heller-Harrison R, Czech MP, Olson EN . (1992). FGF inactivates myogenic helix–loop–helix proteins through phosphorylation of a conserved protein kinase C site in their DNA-binding domains. Cell 71: 1181–1194.

    Article  CAS  PubMed  Google Scholar 

  • Liu LN, Dias P, Houghton PJ . (1998). Mutation of Thr115 in MyoD positively regulates function in murine fibroblasts and human rhabdomyosarcoma cells. Cell Growth Differ 9: 699–711.

    CAS  PubMed  Google Scholar 

  • Lu J, McKinsey TA, Zhang CL, Olson EN . (2000). Regulation of skeletal myogenesis by association of the MEF2 transcription factor with class II histone deacetylases. Mol Cell 6: 233–244.

    Article  CAS  PubMed  Google Scholar 

  • Novitch BG, Mulligan GJ, Jacks T, Lassar AB . (1996). Skeletal muscle cells lacking the retinoblastoma protein display defects in muscle gene expression and accumulate in S and G2 phases of the cell cycle. J Cell Biol 135: 441–456.

    Article  CAS  PubMed  Google Scholar 

  • Novitch BG, Spicer DB, Kim PS, Cheung WL, Lassar AB . (1999). pRb is required for MEF2-dependent gene expression as well as cell-cycle arrest during skeletal muscle differentiation. Curr Biol 9: 449–459.

    Article  CAS  PubMed  Google Scholar 

  • Puri PL, Sartorelli V . (2000). Regulation of muscle regulatory factors by DNA-binding, interacting proteins, and post-transcriptional modifications. J Cell Physiol 185: 155–173.

    Article  CAS  PubMed  Google Scholar 

  • Robson EJ, He SJ, Eccles MR . (2006). A PANorama of PAX genes in cancer and development. Nat Rev Cancer 6: 52–62.

    Article  CAS  PubMed  Google Scholar 

  • Schmidt D, Reimann O, Treuner J, Harms D . (1986). Cellular differentiation and prognosis in embryonal rhabdomyosarcoma. A report from the Cooperative Soft Tissue Sarcoma Study 1981 (CWS 81). Virchows Arch A Pathol Anat Histopathol 409: 183–194.

    Article  CAS  PubMed  Google Scholar 

  • Tapscott SJ, Lassar AB, Weintraub H . (1992). A novel myoblast enhancer element mediates MyoD transcription. Mol Cell Biol 12: 4994–5003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Wang C . (2007). Identification of a new class of PAX3-FKHR target promoters: a role of the Pax3 paired box DNA binding domain. Oncogene 26: 1595–1605.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank David Goldhamer for MyoD reporter constructs; Martyn Goulding, Eric Olsen, Andrew Lassar, Pier-Luigi Lollini, Helen Blau and Frank Rauscher for reagents; Jocelyn Montalvo and Jerry Barnhart for technical assistance; George McNamara and Shelley Nelson for helpful discussions. This work was supported by a Saban Institute Research Career Development Award (MJA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M J Anderson.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Graf Finckenstein, F., Shahbazian, V., Davicioni, E. et al. PAX-FKHR function as pangenes by simultaneously inducing and inhibiting myogenesis. Oncogene 27, 2004–2014 (2008). https://doi.org/10.1038/sj.onc.1210835

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210835

Keywords

This article is cited by

Search

Quick links