Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Genes involved in cell adhesion, cell motility and mitogenic signaling are altered due to HPV 16 E5 protein expression

Abstract

We investigated the effects of the human papillomavirus type 16 E5 oncogene on cellular gene expression in human epithelial cells using cDNA microarray. In a genome-wide microarray assay, the expression of 179 genes was found to be significantly altered due to E5 expression. The expression of lamin A/C was downregulated at protein level. The expression of protein kinase C-δ and phosphoinositide-3-kinase proteins was found to be upregulated. We also observed increased motility of E5-expressing cells. We conclude that the E5 protein affects several cellular pathways involved in cell adhesion, cell motility and mitogenic signaling. These alterations may together lead to inhibition of apoptosis and facilitate the establishment of persistent infection in the epithelium.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM et al. (2000). Gene Ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25: 25–29.

    Article  CAS  Google Scholar 

  • Auvinen E, Alonso A, Auvinen P . (2004). Human papillomavirus type 16 E5 protein colocalizes with the antiapoptotic Bcl-2 protein. Arch Virol 149: 1745–1759.

    Article  CAS  Google Scholar 

  • Band V, Zaychowski D, Kulesa V, Sager R . (1990). Human papillomavirus DNAs immortalize normal human mammary epithelial cells and reduce their growth factor requirements. Proc Natl Acad Sci USA 87: 463–467.

    Article  CAS  Google Scholar 

  • Bouvard V, Matlashewski G, Gu ZM, Storey A, Banks L . (1994). The human papillomavirus type 16 E5 gene cooperates with the E7 gene to stimulate proliferation of primary cells and increases viral gene expression. Virology 203: 73–80.

    Article  CAS  Google Scholar 

  • Bravo IG, Crusius K, Alonso A . (2005). The E5 protein of the human papillomavirus type 16 modulates composition and dynamics of membrane lipids in keratinocytes. Arch Virol 150: 231–246.

    Article  CAS  Google Scholar 

  • Brodie C, Blumberg PM . (2003). Regulation of cell apoptosis by protein kinase C δ. Apoptosis 8: 19–27.

    Article  CAS  Google Scholar 

  • Buness A, Huber W, Steiner K, Sültmann H, Poustka A . (2005). arrayMagic: two-colour cDNA microarray quality control and preprocessing. Bioinformatics 21: 554–556.

    Article  CAS  Google Scholar 

  • Burgert HG, Ruzsics Z, Obermeier S, Hilgendorf A, Windheim M, Elsing A . (2002). Subversion of host defense mechanisms by adenoviruses. Curr Top Microbiol Immunol 269: 273–318.

    CAS  PubMed  Google Scholar 

  • Cantley LC . (2002). The phosphoinositide 3-kinase pathway. Science 296: 1655–1657.

    Article  CAS  Google Scholar 

  • Castronovo V . (1993). Laminin receptors and laminin binding proteins during tumor invasion and metastasis. Invasion Metastasis 13: 1–30.

    CAS  PubMed  Google Scholar 

  • Chakraborti S, Mandal M, Das S, Mandal A, Chakraborti T . (2003). Regulation of matrix metalloproteinases: an overview. Mol Cell Biochem 253: 269–285.

    Article  CAS  Google Scholar 

  • Chang F, Lee JT, Navalonic PM, Steelman LS, Shelton JG, Blalock WL et al. (2003). Involvement of PI3K/Akt pathway in cell cycle progression, apoptosis, and neoplastic transformation: a target for cancer chemotherapy. Leukemia 17: 590–603.

    Article  CAS  Google Scholar 

  • Chen SL, Huang CH, Tsai TC, Lu KY, Tsao YP . (1996). The regulation mechanism of c-jun and junB by human papillomavirus type 16 E5 protein. Arch Virol 141: 791–800.

    Article  CAS  Google Scholar 

  • Chuaqui RF, Bonner RF, Best CJ, Gillespie JW, Flaig MJ, Hewitt SM et al. (2002). Post-analysis follow-up and validation of microarray experiments. Nat Genet 32 (Suppl): 509–514.

    Article  CAS  Google Scholar 

  • Conrad M, Bubb VJ, Schlegel R . (1993). The human papillomavirus type 6 and 16 E5 proteins are membrane-associated proteins which associate with the 16-kilodalton pore-forming protein. J Virol 67: 6170–6178.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Czech MP . (2003). Dynamics of phosphoinositides in membrane retrieval and insertion. Annu Rev Physiol 65: 791–815.

    Article  CAS  Google Scholar 

  • Demeter LM, Stoler MH, Sobel ME, Broker TR, Chow LT . (1992). Expression of high-affinity laminin receptor mRNA correlates with cell proliferation rather than invasion in human papillomavirus-associated cervical neoplasms. Cancer Res 52: 1561–1567.

    CAS  PubMed  Google Scholar 

  • DiMaio D, Lai CC, Klein O . (1998). Virocrine transformation: the intersection between viral transforming proteins and cellular signal transduction pathways. Annu Rev Microbiol 52: 397–421.

    Article  CAS  Google Scholar 

  • Duerst RJ, Morrison LA . (2003). Innate immunity to herpes simplex virus type 2. Viral Immunol 16: 475–490.

    Article  CAS  Google Scholar 

  • Dyson N, Howley PM, Münger K, Harlow E . (1989). The human papillomavirus-16 E7 oncoprotein is able to bind to the retinoblastoma gene product. Science 243: 934–937.

    Article  CAS  Google Scholar 

  • Fehrmann F, Klumpp DJ, Laimins LA . (2003). Human papillomavirus type 31 E5 protein supports cell cycle progression and activates late viral functions upon epithelial differentiation. J Virol 77: 2819–2831.

    Article  CAS  Google Scholar 

  • Genther SM, Sterling S, Duensing S, Münger K, Sattler C, Lambert PF . (2003). Quantitative role of the human papillomavirus type 16 E5 gene during the productive stage of the viral life cycle. J Virol 77: 2832–2842.

    Article  CAS  Google Scholar 

  • Genther Williams SM, Disbrow GL, Schlegel R, Lee D, Threadgill DW, Lambert PF . (2005). Requirement of epidermal growth factor receptor for hyperplasia induced by E5, a high-risk human papillomavirus oncogene. Cancer Res 65: 6534–6542.

    Article  CAS  Google Scholar 

  • Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S et al. (2004). Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 5: e-pub ahead of print 15 September 2004.

  • Halbert CL, Demers GW, Galloway DA . (1991). The E7 gene of human papillomavirus type 16 is sufficient for immortalization of human epithelial cells. J Virol 65: 473–478.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hawley-Nelson P, Vousden KH, Hubbert NL, Lowy DR, Schiller JT . (1989). HPV16 E6 and E7 proteins cooperate to immortalize human foreskin keratinocytes. EMBO J 8: 3905–3910.

    Article  CAS  Google Scholar 

  • Hojilla CV, Mohammed FF, Khokha R . (2003). Matrix metalloproteinases and their tissue inhibitors direct cell fate during cancer development. Br J Cancer 89: 1817–1821.

    Article  CAS  Google Scholar 

  • Ivetac I, Munday AD, Kisseleva MV, Zhang XM, Luff S, Tiganis T et al. (2005). The type I alpha inositol polyphosphate 4-phosphatase generates and terminates phosphoinositide 3-kinase signals on endosomes and the plasma membrane. Mol Biol Cell 16: 2218–2233.

    Article  CAS  Google Scholar 

  • Kim SH, Juhnn YS, Kang S, Park SW, Sung MW, Bang YJ et al. (2006). Human papillomavirus 16 E5 up-regulates the expression of vascular endothelial growth factor through the activation of epidermal growth factor receptor, MEK/ERK1,2 and PI3K/Akt. Cell Mol Life Sci 63: 930–938.

    Article  CAS  Google Scholar 

  • Lampe PD, TenBroek EM, Burt JM, Kurata WE, Johnson RG, Lau AF . (2000). Phosphorylation of connexin43 on serine368 by protein kinase C regulates gap junctional communication. J Cell Biol 7: 1503–1512.

    Article  Google Scholar 

  • Leechanachai P, Banks L, Moreau F, Matlashewski G . (1992). The E5 gene from human papillomavirus type 16 is an oncogene which enhances growth factor-mediated signal transduction to the nucleus. Oncogene 7: 19–25.

    CAS  PubMed  Google Scholar 

  • Leykauf K, Salek M, Sclüter H, Lehmann W, Alonso A . (2004). Identification of membrane proteins differentially expressed in human papillomavirus type 16 E5-transfected human keratinocytes by nanoelectrospray ionization mass spectrometry. J Gen Virol 85: 1427–1431.

    Article  CAS  Google Scholar 

  • McCormack SJ, Brazinski SE, Moore Jr JL, Werness BA, Oldstein DJ . (1997). Activation of the focal adhesion kinase signal transduction pathway in cervical carcinoma cell lines and human genital epithelial cells immortalized with human papillomavirus type 18. Oncogene 15: 265–274.

    Article  CAS  Google Scholar 

  • Munger K, Howley PM . (2002). Human papillomavirus immortalization and transformation functions. Virus Res 89: 213–228.

    Article  CAS  Google Scholar 

  • Munger K, Phelps WC, Bubb V, Howley PM, Schlegel R . (1989). The E6 and E7 genes of the human papillomavirus type 16 together are necessary and sufficient for transformation of primary human keratinocytes. J Virol 63: 4417–4421.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Muñoz N, Bosch FX, Castellsague X, Diaz M, de Sanjose S, Hammouda D et al. (2004). Against which human papillomavirus types shall we vaccinate and screen? The international perspective. Int J Cancer 111: 278–285.

    Article  Google Scholar 

  • O'Brien V . (1998). Viruses and apoptosis. J Gen Virol 79: 1833–1845.

    Article  CAS  Google Scholar 

  • Oelze I, Kartenbeck J, Crusius K, Alonso A . (1995). Human papillomavirus type 16 E5 protein affects cell–cell communication in an epithelial cell line. J Virol 69: 4489–4494.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pim D, Collins M, Banks L . (1992). Human papillomavirus type 16 E5 gene stimulates the transforming activity of the epidermal growth factor receptor. Oncogene 7: 27–32.

    CAS  PubMed  Google Scholar 

  • Pisani P, Bray F, Parkin DM . (2002). Estimates of the world-wide prevalence of cancer for 25 sites in the adult population. Int J Cancer 97: 72–81.

    Article  CAS  Google Scholar 

  • Rajeevan MS, Vernon SD, Taysavang N, Unger ER . (2001). Validation of array-based gene expression profiles by real-time (kinetic) RT-PCR. J Mol Diagnosis 3: 26–31.

    Article  CAS  Google Scholar 

  • Sayama K, Yamasaki K, Hanakawa Y, Shirakata Y, Tokumaru S, Ijuin T et al. (2002). Phosphatidylinositol 3-kinase is a key regulator of early phase differentiation in keratinocytes. J Biol Chem 277: 40390–40396.

    Article  CAS  Google Scholar 

  • Schreiber K, Cannon RE, Karrison T, Beck-Engeser G, Huo D, Tennant RW et al. (2004). Strong synergy between mutant ras and HPV16 E6/E7 in the development of primary tumors. Oncogene 23: 3972–3979.

    Article  CAS  Google Scholar 

  • Shiomi T, Okada Y . (2003). MT1-MMP and MMP-7 in invasion and metastasis of human cancers. Cancer Metastasis Rev 22: 145–152.

    Article  CAS  Google Scholar 

  • Smyth GK . (2004). Linear models and empirical Bayes for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 3: Article 3.

  • Stöppler MC, Straight SW, Tsao G, Schlegel R, McCance DJ . (1996). The E5 gene of HPV-16 enhances keratinocyte immortalization by full-length DNA. Virology 223: 251–254.

    Article  Google Scholar 

  • Straight SW, Hinkle PM, Jewers RJ, McCance DJ . (1993). The E5 oncoprotein of human papillomavirus type 16 transforms fibroblasts and effects the down-regulation of the epidermal growth factor receptor in keratinocytes. J Virol 67: 4521–4532.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thomsen P, Rudenko O, Berezin V, Norrild B . (1999). The HPV-16 E5 oncogene and bafilomycin A1 influence cell motility. Biochim Biophys Acta 1452: 285–295.

    Article  CAS  Google Scholar 

  • Tusher VG, Tibshirani R, Chu G . (2001). Significance analysis of microarrays applied to the ionizing radiation response. [Erratum in: Proc Natl Acad Sci USA 98: 10515] Proc Natl Acad Sci USA 98: 5116–5121 .

    Article  CAS  Google Scholar 

  • Ueda Y, Hirai S, Osada S, Suzuki A, Mizuno K, Ohno S . (1996). Protein kinase C activates the MEK–ERK pathway in a manner independent of Ras and dependent on Raf. J Biol Chem 271: 23512–23519.

    Article  CAS  Google Scholar 

  • Valle GF, Banks L . (1995). The human papillomavirus (HPV)-6 and HPV-16 E5 proteins co-operate with HPV-16 E7 in the transformation of primary rodent cells. J Gen Virol 76: 1239–1245.

    Article  Google Scholar 

  • Walboomers JM, Jacobs MV, Manos MM, Bosch FX, Kummer JA, Shah KV et al. (1999). Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J Pathol 189: 12–19.

    Article  CAS  Google Scholar 

  • Werner JA, Rathcke IO, Mandic R . (2002). The role of matrix metalloproteinases in squamous cell carcinomas of the head and neck. Clin Exp Metastasis 4: 275–282.

    Article  Google Scholar 

  • Werness BA, Levine AJ, Howley PM . (1990). Association of human papillomavirus types 16 and 18 E6 proteins with p53. Science 248: 76–79.

    Article  CAS  Google Scholar 

  • Zhang B, Spandau DF, Roman A . (2002). E5 protein of human papillomavirus type 16 protects human foreskin keratinocytes from UVB-irradiation-induced apoptosis. J Virol 76: 220–231.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Professor Angel Alonso (DKFZ, Heidelberg, Germany) for providing the HaCaT-E5 and -pMSG cell lines. We acknowledge Rita Fingerroos for excellent technical assistance and Anu Planken for assistance in PCR technology. Light Microscopy Unit (Institute of Biotechnology, University of Helsinki, Finland) is acknowledged for their support in cell motility assays. N Kivi was supported by grants from the University of Helsinki Research Foundation, the Oskar Öflund Foundation, the Biomedicum Helsinki Foundation, Fund of Laboratory Medicine Research and the K Albin Johansson Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N Kivi.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kivi, N., Greco, D., Auvinen, P. et al. Genes involved in cell adhesion, cell motility and mitogenic signaling are altered due to HPV 16 E5 protein expression. Oncogene 27, 2532–2541 (2008). https://doi.org/10.1038/sj.onc.1210916

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210916

Keywords

This article is cited by

Search

Quick links