Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Reciprocal negative regulation between S100A7/psoriasin and β-catenin signaling plays an important role in tumor progression of squamous cell carcinoma of oral cavity

Abstract

Overexpression of S100A7 (psoriasin), a small calcium-binding protein, has been associated with the development of psoriasis and carcinomas in different types of epithelia, but its precise functions are still unknown. Using human tissue specimens, cultured cell lines, and a mouse model, we found that S100A7 is highly expressed in preinvasive, well-differentiated and early staged human squamous cell carcinoma of the oral cavity (SCCOC), but little or no expression was found in poorly differentiated, later-staged invasive tumors. Interestingly, our results showed that S100A7 inhibits both SCCOC cell proliferation in vitro and tumor growth/invasion in vivo. Furthermore, we demonstrated that S100A7 is associated with the β-catenin complex, and inhibits β-catenin signaling by targeting β-catenin degradation via a noncanonical mechanism that is independent of GSK3β-mediated phosphorylation. More importantly, our results also indicated that β-catenin signaling negatively regulates S100A7 expression. Thus, this reciprocal negative regulation between S100A7 and β-catenin signaling implies their important roles in tumor development and progression. Despite its high levels of expression in early stage SCCOC tumorigenesis, S100A7 actually inhibits SCCOC tumor growth/invasion as well as tumor progression. Downregulation of S100A7 in later stages of tumorigenesis increases β-catenin signaling, leading to promotion of tumor growth and tumor progression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 6
Figure 2
Figure 3
Figure 4
Figure 5
Figure 7
Figure 8

Similar content being viewed by others

References

  • Adhikary S, Eilers M . (2005). Transcriptional regulation and transformation by Myc proteins. Nat Rev Mol Cell Biol 6: 635–645.

    Article  CAS  PubMed  Google Scholar 

  • Alowami S, Qing G, Emberley E, Snell L, Watson PH . (2003). Psoriasin (S100A7) expression is altered during skin tumorigenesis. BMC Dermatol 3: 1.

    Article  PubMed  Google Scholar 

  • Bienz M, Clevers H . (2000). Linking colorectal cancer to Wnt signaling. Cell 103: 311–320.

    Article  CAS  PubMed  Google Scholar 

  • Blanpain C, Horsley V, Fuchs E . (2007). Epithelial stem cells: turning over new leaves. Cell 128: 445–458.

    Article  CAS  PubMed  Google Scholar 

  • Broome AM, Ryan D, Eckert RL . (2003). S100 protein subcellular localization during epidermal differentiation and psoriasis. J Histochem Cytochem 51: 675–685.

    Article  CAS  PubMed  Google Scholar 

  • Di Nuzzo S, Sylva-Steenland RM, Koomen CW, De Rie MA, Das PK, Bos JD et al. (2000). Exposure to UVB induces accumulation of LFA-1+ T cells and enhanced expression of the chemokine psoriasin in normal human skin. Photochem Photobiol 72: 374–382.

    Article  CAS  PubMed  Google Scholar 

  • Donato R . (2001). S100: a multigenic family of calcium-modulated proteins of the EF-hand type with intracellular and extracellular functional roles. Int J Biochem Cell Biol 33: 637–668.

    Article  CAS  PubMed  Google Scholar 

  • Donato R . (2003). Intracellular and extracellular roles of S100 proteins. Microsc Res Tech 60: 540–551.

    Article  CAS  PubMed  Google Scholar 

  • Emberley ED, Niu Y, Curtis L, Troup S, Mandal SK, Myers JN et al. (2005). The S100A7-c-Jun activation domain binding protein 1 pathway enhances prosurvival pathways in breast cancer. Cancer Res 65: 5696–5702.

    Article  CAS  PubMed  Google Scholar 

  • Emberley ED, Niu Y, Leygue E, Tomes L, Gietz RD, Murphy LC et al. (2003a). Psoriasin interacts with Jab1 and influences breast cancer progression. Cancer Res 63: 1954–1961.

    CAS  PubMed  Google Scholar 

  • Emberley ED, Niu Y, Njue C, Kliewer EV, Murphy LC, Watson PH . (2003b). Psoriasin (S100A7) expression is associated with poor outcome in estrogen receptor-negative invasive breast cancer. Clin Cancer Res 9: 2627–2631.

    CAS  PubMed  Google Scholar 

  • Enerback C, Porter DA, Seth P, Sgroi D, Gaudet J, Weremowicz S et al. (2002). Psoriasin expression in mammary epithelial cells in vitro and in vivo. Cancer Res 62: 43–47.

    CAS  Google Scholar 

  • Filipek A, Jastrzebska B, Nowotny M, Kuznicki J . (2002). CacyBP/SIP, a calcyclin and Siah-1-interacting protein, binds EF-hand proteins of the S100 family. J Biol Chem 277: 28848–28852.

    Article  CAS  PubMed  Google Scholar 

  • Fukushima T, Zapata JM, Singha NC, Thomas M, Kress CL, Krajewska M et al. (2006). Critical function for SIP, a ubiquitin E3 ligase component of the beta-catenin degradation pathway, for thymocyte development and G1 checkpoint. Immunity 24: 29–39.

    Article  CAS  PubMed  Google Scholar 

  • Hart M, Concordet JP, Lassot I, Albert I, del los Santos R, Durand H et al. (1999). The F-box protein beta-TrCP associates with phosphorylated beta-catenin and regulates its activity in the cell. Curr Biol 9: 207–210.

    Article  CAS  PubMed  Google Scholar 

  • He TC, Sparks AB, Rago C, Hermeking H, Zawel L, Da Costa LT et al. (1998). Identification of c-MYC as a target of the APC pathway. Science 281: 1509–1512.

    Article  CAS  PubMed  Google Scholar 

  • Heizmann CW, Fritz G, Schafer BW . (2002). S100 proteins: structure, functions and pathology. Front Biosci 7: d1356–d1368.

    CAS  PubMed  Google Scholar 

  • Hoffmann HJ, Olsen E, Etzerodt M, Madsen P, Thogersen HC, Kruse T et al. (1994). Psoriasin binds calcium and is upregulated by calcium to levels that resemble those observed in normal skin. J Invest Dermatol 103: 370–375.

    Article  CAS  PubMed  Google Scholar 

  • Kennedy RD, Gorski JJ, Quinn JE, Stewart GE, James CR, Moore S et al. (2005). BRCA1 and c-Myc associate to transcriptionally repress psoriasin, a DNA damage-inducible gene. Cancer Res 65: 10265–10272.

    Article  CAS  PubMed  Google Scholar 

  • Kitagawa M, Hatakeyama S, Shirane M, Matsumoto M, Ishida N, Hattori K et al. (1999). An F-box protein, FWD1, mediates ubiquitin-dependent proteolysis of beta-catenin. EMBO J 18: 2401–2410.

    Article  CAS  PubMed  Google Scholar 

  • Korinek V, Barker N, Morin PJ, van Wichen D, De Weger R, Kinzler KW et al. (1997). Constitutive transcriptional activation by a beta-catenin-Tcf complex in APC−/− colon carcinoma. Science 275: 1784–1787.

    Article  CAS  PubMed  Google Scholar 

  • Krop I, Marz A, Carlsson H, Li X, Bloushtain-Qimron N, Hu M et al. (2005). A putative role for psoriasin in breast tumor progression. Cancer Res 65: 11326–11334.

    Article  CAS  PubMed  Google Scholar 

  • Leygue E, Snell L, Hiller T, Dotzlaw H, Hole K, Murphy LC et al. (1996). Differential expression of psoriasin messenger RNA between in situ and invasive human breast carcinoma. Cancer Res 56: 4606–4609.

    CAS  PubMed  Google Scholar 

  • Liu J, Stevens J, Rote CA, Yost HJ, Hu Y, Neufeld KL et al. (2001). Siah-1 mediates a novel beta-catenin degradation pathway linking p53 to the adenomatous polyposis coli protein. Mol Cell 7: 927–936.

    Article  CAS  PubMed  Google Scholar 

  • Martinsson H, Yhr M, Enerback C . (2005). Expression patterns of S100A7 (psoriasin) and S100A9 (calgranulin-B) in keratinocyte differentiation. Exp Dermatol 14: 161–168.

    Article  CAS  PubMed  Google Scholar 

  • Matsuzawa SI, Reed JC . (2001). Siah-1, SIP, and Ebi collaborate in a novel pathway for beta-catenin degradation linked to p53 responses. Mol Cell 7: 915–926.

    Article  CAS  Google Scholar 

  • Moog-Lutz C, Bouillet P, Regnier CH, Tomasetto C, Mattei MG, Chenard MP et al. (1995). Comparative expression of the psoriasin (S100A7) and S100C genes in breast carcinoma and co-localization to human chromosome 1q21-q22. Int J Cancer 63: 297–303.

    Article  CAS  PubMed  Google Scholar 

  • Moon RT, Kohn AD, De Ferrari GV, Kaykas A . (2004). WNT and beta-catenin signalling: diseases and therapies. Nat Rev Genet 5: 691–701.

    Article  CAS  Google Scholar 

  • Morin PJ, Weeraratna AT . (2003). Wnt signaling in human cancer. Cancer Treat Res 115: 169–187.

    Article  CAS  PubMed  Google Scholar 

  • Patel JH, Loboda AP, Showe MK, Showe LC, McMahon SB . (2004). Analysis of genomic targets reveals complex functions of MYC. Nat Rev Cancer 4: 562–568.

    Article  CAS  PubMed  Google Scholar 

  • Reischl J, Schwenke S, Beekman JM, Mrowietz U, Sturzebecher S, Heubach JF . (2007). Increased expression of Wnt5a in psoriatic plaques. J Invest Dermatol 127: 163–169.

    Article  CAS  PubMed  Google Scholar 

  • Taketo MM . (2004). Shutting down Wnt signal-activated cancer. Nat Genet 36: 320–322.

    Article  CAS  PubMed  Google Scholar 

  • Tavakkol A, Zouboulis CC, Duell EA, Voorhees JJ . (1994). A retinoic acid-inducible skin-specific gene (RIS-1/psoriasin): molecular cloning and analysis of gene expression in human skin in vivo and cultured skin cells in vitro. Mol Biol Rep 20: 75–83.

    Article  CAS  PubMed  Google Scholar 

  • van de Wetering M, Sancho E, Verweij C, De Lau W, Oving I, Hurlstone A et al. (2002). The beta-catenin/TCF-4 complex imposes a crypt progenitor phenotype on colorectal cancer cells. Cell 111: 241–250.

    Article  CAS  PubMed  Google Scholar 

  • Watson PH, Leygue ER, Murphy LC . (1998). Psoriasin (S100A7). Int J Biochem Cell Biol 30: 567–571.

    Article  CAS  PubMed  Google Scholar 

  • Willert K, Jones KA . (2006). Wnt signaling: is the party in the nucleus? Genes Dev 20: 1394–1404.

    Article  CAS  PubMed  Google Scholar 

  • Yigitbasi OG, Younes MN, Doan D, Jasser SA, Schiff BA, Bucana CD et al. (2004). Tumor cell and endothelial cell therapy of oral cancer by dual tyrosine kinase receptor blockade. Cancer Res 64: 7977–7984.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institute of Dental and Craniofacial Research—NIH grant RO1DE01461301 and the NIH Cancer Center support grant CA16672 and CA69381. We thank Mrs Carol Johnston for the excellent technical assistance. We thank Dr PD McCrea, Dr M-C Hung, Dr X-W Wu, Dr E Fearon and Dr GP Nolan for providing plasmids.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J N Myers.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, G., Xie, TX., Zhao, M. et al. Reciprocal negative regulation between S100A7/psoriasin and β-catenin signaling plays an important role in tumor progression of squamous cell carcinoma of oral cavity. Oncogene 27, 3527–3538 (2008). https://doi.org/10.1038/sj.onc.1211015

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1211015

Keywords

This article is cited by

Search

Quick links