Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Runx2-mediated activation of the Bax gene increases osteosarcoma cell sensitivity to apoptosis

Abstract

The Runx family of transcription factors regulate cell growth and differentiation, and control the expression of target genes involved in cell fate decisions. We examined the role of the bone-related member of this family, Runx2, in regulating apoptosis via modulation of the Bcl2 family of genes in the osteosarcoma cell line Saos2. Our data demonstrate that Runx2 directly binds to two Runx-specific regulatory elements on the human bax promoter thereby inducing Bax expression. Furthermore, bone morphogenetic protein-induced or vector-mediated expression of Runx2 resulted in upregulation of Bax expression, and subsequent increased sensitivity of Saos2 cells to apoptosis. Finally, the observed upregulation of Bax expression and increased apoptosis were Runx2 dependent as Runx2 loss of function abrogated these effects. Our study provides the first evidence for Bax as a direct target of Runx2, suggesting that Runx2 may act as a proapoptotic factor in osteosarcoma cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Adams JM, Cory S . (1998). The Bcl-2 protein family: arbiters of cell survival. Science 281: 1322–1326.

    Article  CAS  PubMed  Google Scholar 

  • Antignani A, Youle RJ . (2006). How do Bax and Bak lead to permeabilization of the outer mitochondrial membrane? Curr Opin Cell Biol 18: 685–689.

    Article  CAS  PubMed  Google Scholar 

  • Bae SC, Choi JK . (2004). Tumor suppressor activity of RUNX3. Oncogene 23: 4336–4340.

    Article  CAS  PubMed  Google Scholar 

  • Bae SC, Lee YH . (2006). Phosphorylation, acetylation and ubiquitination: the molecular basis of RUNX regulation. Gene 366: 58–66.

    Article  CAS  Google Scholar 

  • Barnes GL, Javed A, Waller SM, Kamal MH, Hebert KE, Hassan MQ et al. (2003). Osteoblast-related transcription factors Runx2 (Cbfa1/AML3) and MSX2 mediate the expression of bone sialoprotein in human metastatic breast cancer cells. Cancer Res 63: 2631–2637.

    CAS  PubMed  Google Scholar 

  • Blyth K, Cameron E, Neil J . (2005). The Runx genes: gain or loss of function in cancer. Nature Rev 5: 376–387.

    CAS  Google Scholar 

  • Brubaker KD, Vessella RL, Brown LG, Corey E . (2003). Prostate cancer expression of runt-domain transcription factor Runx2, a key regulator of osteoblast differentiation and function. Prostate 56: 13–22.

    Article  CAS  Google Scholar 

  • Cande C, Cohen I, Daugas E, Ravagnan L, Larochette N, Zamzami N et al. (2002). Apoptosis-inducing factor (AIF): a novel caspase-independent death effector released from mitochondria. Biochimie 84: 215–222.

    Article  CAS  PubMed  Google Scholar 

  • Coffman JA . (2003). Runx transcription factors and the developmental balance between cell proliferation and differentiation. Cell Biol Int 27: 315–324.

    Article  CAS  PubMed  Google Scholar 

  • Cory S, Adams JM . (2002). The Bcl2 family: regulators of the cellular life-or-death switch. Nat Rev Cancer 2: 647–656.

    Article  CAS  PubMed  Google Scholar 

  • Drissi H, Pouliot A, Stein JL, van Wijnen AJ, Stein GS, Lian JB . (2002). Identification of novel protein/DNA interactions within the promoter of the bone-related transcription factor Runx2/Cbfa1. J Cell Biochem 86: 403–412.

    Article  CAS  PubMed  Google Scholar 

  • Ducy P, Zhang R, Geoffroy V, Ridall AL, Karsenty G . (1997). Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell 89: 747–754.

    Article  CAS  Google Scholar 

  • Fukuda N, Saitoh M, Kobayashi N, Miyazono K . (2006). Execution of BMP-4-induced apoptosis by p53-dependent ER dysfunction in myeloma and B-cell hybridoma cells. Oncogene 25: 3509–3517.

    Article  CAS  PubMed  Google Scholar 

  • Galindo M, Pratap J, Young DW, Hovhannisyan H, Im H, Choi JY et al. (2005). The bone-specific expression of Runx2 oscillates during the cell cycle to support a G1-related antiproliferative function in osteoblasts. J Biol Chem 280: 20274–20285.

    Article  CAS  PubMed  Google Scholar 

  • Guo WH, Weng LQ, Ito K, Chen LF, Nakanishi H, Tatematsu M et al. (2002). Inhibition of growth of mouse gastric cancer cells by Runx3, a novel tumor suppressor. Oncogene 21: 8351–8355.

    Article  CAS  PubMed  Google Scholar 

  • Inoue K, Ozaki S, Shiga T, Ito K, Masuda T, Okado N et al. (2002). Runx3 controls the axonal projection of proprioceptive dorsal root ganglion neurons. Nat Neurosci 5: 946–954.

    Article  CAS  PubMed  Google Scholar 

  • Kagoshima H, Shigesada K, Satake M, Ito Y, Miyoshi H, Ohki M et al. (1993). The Runt domain identifies a new family of heteromeric transcriptional regulators. Trends Genet 9: 338–341.

    Article  CAS  PubMed  Google Scholar 

  • Komori T . (2003). Requisite roles of Runx2 and Cbfb in skeletal development. J Bone Miner Metab 21: 193–197.

    CAS  PubMed  Google Scholar 

  • Lee JC, Thomas DM, Gutierrez G, Carty SA, Yanagawa S, Hinds PW . (2006). HES1 cooperates with pRb to activate RUNX2-dependent transcription. J Bone Miner Res 21: 921–933.

    Article  CAS  PubMed  Google Scholar 

  • Li QL, Ito K, Sakakura C, Fukamachi H, Inoue K, Chi XZ et al. (2002). Causal relationship between the loss of RUNX3 expression and gastric cancer. Cell 109: 113–124.

    Article  CAS  PubMed  Google Scholar 

  • Martinou JC, Green DR . (2001). Breaking the mitochondrial barrier. Nat Rev Mol Cell Biol 2: 63–67.

    Article  CAS  PubMed  Google Scholar 

  • Meijerink JPP, Mensink EJBM, Wang K, Sedlak TW, Sloetjes AW, De Witte T et al. (1998). Hematopoietic malignancies demonstrate loss-of-function mutations of BAX. Blood 91: 2991–2997.

    CAS  PubMed Central  Google Scholar 

  • Miyashita T, Reed JC . (1995). Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell 80: 293–299.

    Article  CAS  PubMed  Google Scholar 

  • Miyoshi H, Shimizu K, Kozu T, Maseki N, Kaneko Y, Ohki M . (1991). t(8;21) breakpoints on chromosome 21 in acute myeloid leukemia are clustered within a limited region of a single gene, AML1. Proc Natl Acad Sci USA 88: 10431–10434.

    Article  CAS  Google Scholar 

  • Mundlos S, Otto F, Mundlos C, Mulliken JB, Aylsworth AS, Albright S et al. (1997). Mutations involving the transcription factor CBFA1 cause cleidocranial dysplasia. Cell 89: 773–779.

    Article  CAS  PubMed  Google Scholar 

  • Nicholson DW . (1999). Caspase structure, proteolytic substrates, and function during apoptotic cell death. Cell Death Differ 6: 1028–1042.

    Article  CAS  PubMed  Google Scholar 

  • Noda M . (2006). Current topics in pharmacological research on bone metabolism: regulation of bone mass by the function of endogenous modulators of bone morphogenetic protein in adult stage. J Pharmacol Sci. 100: 211–214.

    Article  CAS  PubMed  Google Scholar 

  • Nunez G, Seto M, Seremetis S, Ferrero D, Grignani F, Korsmeyer SJ et al. (1989). Growth- and tumor-promoting effects of deregulated BCL2 in human B-lymphoblastoid cells. Proc Natl Acad Sci USA 86: 4589–4593.

    Article  CAS  PubMed  Google Scholar 

  • Okuda T, van Deursen J, Hiebert SW, Grosveld G, Downing JR . (1996). AML1, the target of multiple chromosomal translocations in human leukemia, is essential for normal fetal liver hematopoiesis. Cell 84: 321–330.

    Article  CAS  Google Scholar 

  • Pratap J, Galindo M, Zaidi SK, Vradii D, Bhat BM, Robinson JA et al. (2003). Cell growth regulatory role of Runx2 during proliferative expansion of preosteoblasts. Cancer Res 63: 5357–5362.

    CAS  PubMed  Google Scholar 

  • Rampino N, Yamamoto H, Ionov Y, Li Y, Sawai H, Reed JC et al. (1997). Somatic frameshift mutations in the bax gene in colon cancers of the microsatellite mutator phenotype. Science 275: 967–969.

    Article  CAS  PubMed  Google Scholar 

  • Reed JC . (1997). Cytochrome c: can't live with it—can't live without it. Cell 91: 559–562.

    Article  CAS  PubMed  Google Scholar 

  • Reed JC . (1999). Dysregulation of apoptosis in cancer. J Clin Oncol 17: 2941–2953.

    Article  CAS  PubMed  Google Scholar 

  • Reed JC . (2006). Proapoptotic multidomain Bcl-2/Bax-family proteins: mechanisms, physiological roles, and therapeutic opportunities. Cell Death Differ 13: 1378–1386.

    Article  CAS  PubMed  Google Scholar 

  • Thomas DM, Johnson SA, Sims NA, Trivett MK, Slavin JL, Rubin BP et al. (2004). Terminal differentiation, mediated by runx2 and p27KIP1, is disrupted in osteosarcoma. J Cell Biochem 167: 925–934.

    CAS  Google Scholar 

  • Torquati A, O'Rear L, Longobardi L, Spagnoli A, Richards WO, Daniel BR . (2004). RUNX3 inhibits cell proliferation and induces apoptosis by reinstating transforming growth factor beta responsiveness in esophageal adenocarcinoma cells. Surgery 136: 310–316.

    Article  PubMed  Google Scholar 

  • van Gurp M, Festjens N, van Loo G, Saelens X, Vandenabeele P . (2003). Mitochondrial intermembrane proteins in cell death. Biochem Biophys Res Commun 304: 487–497.

    Article  CAS  PubMed  Google Scholar 

  • van Wijnen AJ, Stein GS, Gergen JP, Groner Y, Hiebert SW, Ito Y et al. (2004). Nomenclature for Runt-related (RUNX) proteins. Oncogene 23: 4209–4210.

    Article  CAS  PubMed  Google Scholar 

  • Vogiatzi P, De Falco G, Claudio PP, Giordano A . (2006). How does the human RUNX3 gene induce apoptosis in gastric cancer? Latest data, reflections and reactions. Cancer Biol Ther 5: 371–374.

    Article  CAS  PubMed  Google Scholar 

  • Wang LL . (2005). Biology of osteogenic sarcoma. Cancer J 11: 294–305.

    Article  CAS  Google Scholar 

  • Wei MC, Zong WX, Cheng EH, Lindsten T, Panoutsakopoulou V, Ross AJ et al. (2001). Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science 292: 727–730.

    Article  CAS  PubMed  Google Scholar 

  • Willis SN, Adams JM . (2005). Life in the balance: how BH3-only proteins induce apoptosis. Curr Opin Cell Biol 17: 617–625.

    Article  CAS  PubMed  Google Scholar 

  • Yano T, Ito K, Fukamachi H, Chi XZ, Wee HJ, Inoue K et al. (2006). The RUNX3 tumor suppressor upregulates Bim in gastric epithelial cells undergoing transforming growth factor beta-induced apoptosis. Mol Cell Biol 26: 4474–4488.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Financial support for this study was provided by the Wilmot Cancer Research Foundation and Karen D′Amico Foundation and an NIH RO-1 Grant (AR-052674-01) to Hicham Drissi. We thank Dr Do Yu Soung for reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M H Drissi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eliseev, R., Dong, YF., Sampson, E. et al. Runx2-mediated activation of the Bax gene increases osteosarcoma cell sensitivity to apoptosis. Oncogene 27, 3605–3614 (2008). https://doi.org/10.1038/sj.onc.1211020

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1211020

Keywords

This article is cited by

Search

Quick links