Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Induction of prostate apoptosis by α1-adrenoceptor antagonists: mechanistic significance of the quinazoline component

Abstract

α1-Adrenoceptor antagonists, have been documented to induce apoptosis and reduce prostate tumor vascularity in benign and malignant prostate cells. The quinazoline based α1-antagonists, doxazosin and terazosin but not tamsulosin (a sulphonamide derivative) suppress prostate growth without affecting cell proliferation. These quinazoline-mediated apoptotic effects occur via an α1-adrenoceptor independent mechanism potentially involving activation of the TGF-β signal transduction pathway. This review discusses the current knowledge of the action of quinazoline-derived α1-adrenoceptor antagonists in the benign and malignant prostate and their potential therapeutic use in the treatment of benign prostatic hyperplasia (BPH) and prostate cancer. Finally, a molecular pathway is proposed for their observed apoptotic function against prostate cells. Increased understanding of the action of these established and clinically accepted agents would provide a basis for the design of safe, effective therapeutic regimens in the treatment of prostatic diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Greenlee RT, Murray T, Bolden S, Wingo PA . Cancer statistics, 2000 CA Cancer J Clin 2000 50: 7–33

    Article  CAS  PubMed  Google Scholar 

  2. Boyle P . Prostate Cancer 2000; evolution of an epidemic of unknown origin In: Dennis L (ed) Prostate Cancer 2000 Springer: Heidelberg 1994 pp 5–11

    Chapter  Google Scholar 

  3. Isaacs JT . Role of androgens in prostatic cancer Vit and Horm 1994 49: 433–502

    Article  CAS  Google Scholar 

  4. Catalona WJ, Smith DS, Ratliff TL, Basler JW . Detection of organ confined prostate cancer is associated through prostate-specific antigen-based screening JAMA 1993 270: 948–954

    Article  CAS  PubMed  Google Scholar 

  5. Richie JP et al. Effect of patient age on early detection of prostate cancer with prostate specific antigen and digital rectal examination Urology 1993 42: 365–374

    Article  PubMed  Google Scholar 

  6. Raghavan D . Non-hormone chemotherapy for prostate cancer: principles of treatment and application to the testing of new drugs Semin Oncol 1988 15: 371–389

    CAS  PubMed  Google Scholar 

  7. Crawford ED et al. A controlled trial of leuprolide with and without flutamide in prostatic carcinoma New Engl J Med 1989 321: 419–424

    Article  CAS  PubMed  Google Scholar 

  8. Zelefsky MJ et al. Neoadjuvant hormonal therapy improves the therapeutic ration in patients with bulky prostatic disease treated with three dimensional conformal therapy Int J Rad Oncol Biol Phys 1994 29: 755–761

    Article  CAS  Google Scholar 

  9. Coffey DS, Walsh PC . Clinical and experimental studies of benign prostatic hyperplasia Urol Clin North Am 1990 17: 461–475

    CAS  PubMed  Google Scholar 

  10. Kyprianou N . Role of apoptosis in development of benign prostatic hyperplasia (BPH) and prostate cancer: clinical significance in diagnosis and treatment In: Naz RN (ed) Prostate: Basic and Clinical Aspects CRC Press: Inc Boca Raton, FL 1997 pp 181–199

    Google Scholar 

  11. Bruckheimer EM, Kyprianou N . Apoptosis in prostate carcinogenesis. A growth regulator and a therapeutic target Cell Tissue Res 2000 301: 153–162

    Article  CAS  PubMed  Google Scholar 

  12. Kyprianou N, Isaacs JT . Activation of programmed cell death in the rat ventral prostate after castration Endocrinology 1988 122: 552–562

    Article  CAS  PubMed  Google Scholar 

  13. Kyprianou N, English HF, Isaacs JT . Programmed cell death during regression of PC-82 human prostate cancer following androgen ablation Cancer Res 1990 50: 3748–3753

    CAS  PubMed  Google Scholar 

  14. Kyprianou N, Bains AK, Jacobs SC . Induction of apoptosis in androgen-independent human prostate cancer cells undergoing thymineless death Prostate 1994 25: 66–75

    Article  CAS  PubMed  Google Scholar 

  15. Sklar GN, Eddy HA, Jacobs SC, Kyprianou N . Combined antitumor effect of suramin plus irradiation in human prostate cancer cells: the role of apoptosis J Urol 1993 150: 1526–1532

    Article  CAS  PubMed  Google Scholar 

  16. Furuya Y, Krajewski S, Epstein JI, Isaacs JT . Expression of bcl-2 and the progression of human and rodent prostate cancers Clin Cancer Res 1996 2: 389–398

    CAS  PubMed  Google Scholar 

  17. Rupnow BA et al. Direct evidence that apoptosis enhances tumor responses to fractionated radiotherapy Cancer Res 1998 58: 1779–1784

    CAS  PubMed  Google Scholar 

  18. Caine M, Raz S, Zeigler M . Adrenergic and cholinergic receptors in the human prostate, prostatic capsule and bladder neck Br J Urol 1975 47: 193–202

    Article  CAS  PubMed  Google Scholar 

  19. Lepor H, Shapiro E . Characterization of the α1-adrenergic receptors in human benign prostatic hyperplasia J Urol 1984 132: 396–398

    Google Scholar 

  20. Walden PD et al. Localization of mRNA and receptor binding sites for the α1 a-adrenoceptor subtype in the rat, monkey and human urinary bladder and prostate J Urol 1997 157: 1032–1038

    Article  CAS  PubMed  Google Scholar 

  21. Caine M . Alpha-adrenergic mechanisms in dynamics of benign prostatic hypertrophy Urology 1988 32: 16–20

    CAS  PubMed  Google Scholar 

  22. Caine M, Pfau A, Pelberg S . The use of alpha-adrenergic blockers in benign prostatic hyperplasia Br J Urol 1976 48: 255–263

    CAS  PubMed  Google Scholar 

  23. Lepor H, Tang R, Shapiro E . The alpha-adrenoreceptor subtype mediating the tension of human prostatic smooth muscle Prostate 1993 22: 301–307

    Article  CAS  PubMed  Google Scholar 

  24. Chapple CR et al. Alpha 1-adrenoreceptor subtypes in the human prostate Br J Urol 1994 74: 585–589

    Article  CAS  PubMed  Google Scholar 

  25. Beduschi MC, Beduschi R, Oesterling JE . Alpha-blockade therapy for benign prostatic hyperplasia: from a nonselective to a more selective alpha1 a-adrenergic antagonist Urology 1998 51: 861–872

    Article  CAS  PubMed  Google Scholar 

  26. Andersson KE, Lepor H, Wyllie MG . Prostatic alpha 1-adrenoreceptors and uroselectivity Prostate 1997 30: 202–215

    Article  CAS  PubMed  Google Scholar 

  27. Smith P, Rhodes NP, Ke Y, Foster CS . Influence of the α1-adrenergic antagonist, doxazosin, on noradrenalin-induced modulation of cytoskeletal proteins in cultured hyperplastic prostatic stromal cells Prostate 1999 38: 216–227

    Article  CAS  PubMed  Google Scholar 

  28. Kirby RS . Doxazosin in treatment of the lower urinary tract In: Kirby RS, McConnel JD, Fitzpatrick JM, Roeherborn CG, Boyle P (eds) Textbook of Benign Prostatic Hyperplasia ISIS Medical Media: Oxford 1996 pp 287–293

    Google Scholar 

  29. Young RA, Brogden RM . Doxazosin: a review of its pharmacodynamic and pharmokinetic properties, and therapeutic efficacy in mild or moderate hypertension Drugs 1988 33: 525–541

    Article  Google Scholar 

  30. Sonders RC . Pharmacokinetics of terazosin Am J Med 1986 80: 20–24

    Article  CAS  PubMed  Google Scholar 

  31. Kyprianou N et al. Induction of prostatic apoptosis by doxazosin in benign prostatic hyperplasia J Urol 1998 159: 1810–1815

    Article  CAS  PubMed  Google Scholar 

  32. Chon JK et al. α1-Adrenoreceptor antagonists terazosin and doxazosin induce prostate apoptosis without affecting all proliferation in patients with benign prostatic hyperplasia J Urol 1999 161: 2002–2008

    Article  CAS  PubMed  Google Scholar 

  33. Kyprianou N, Benning CM . Suppression of human prostate cancer cell growth by alpha 1-adrenoreceptor antagonists doxazosin and terazosin via induction of apoptosis Cancer Res 2000 60: 4550–4555

    CAS  PubMed  Google Scholar 

  34. Yang G et al. Transforming growth factor-β1 transduced mouse prostate reconstitutions: II. Induction of apoptosis by doxazosin Prostate 1997 33: 157–163

    Article  CAS  PubMed  Google Scholar 

  35. Cal C et al. Doxazosin. A new cytotoxic agent for prostate cancer? BJU Intl 2000 85: 672–675

    Article  CAS  Google Scholar 

  36. Kyprianou N, Chon J, Benning CM . Effects of alpha(1)-adrenoceptor (alpha(1)-AR) antagonists on cell proliferation and apoptosis in the prostate: therapeutic implications in prostatic disease Prostate 2000 9: (Suppl) 42–46

    Article  CAS  Google Scholar 

  37. Wrana JL et al. Mechanism of activation of the TGF-beta receptor Nature 1994 370: 341–347

    Article  CAS  PubMed  Google Scholar 

  38. Kyprianou N, Isaacs JT . Expression of transforming growth factor-beta in the rat ventral prostate during castration-induced programmed cell death Mol Endocrinol 1989 3: 1515–1522

    Article  CAS  PubMed  Google Scholar 

  39. Martikainen P, Kyprianou N, Isaacs JT . Effect of transforming growth factor-β1 on proliferation and death of rat prostatic cells Endocrinology 1990 127: 2963–2968

    Article  CAS  PubMed  Google Scholar 

  40. Kyprianou N, Isaacs JT . Identification of a cellular receptor for transforming growth factor-β in rat ventral prostate and its negative regulation by androgens Endocrinology 1988 123: 2124–2131

    Article  CAS  PubMed  Google Scholar 

  41. Tu H, Borkowski A, Jacobs SC, Kyprianou N . Incidence of apoptosis and cell proliferation in prostate cancer: relationship with TGF-β and bcl-2 expression Int J Cancer 1996 69: 357–363

    Article  CAS  PubMed  Google Scholar 

  42. Anglin IE, Kyprianou N . Unpublished observations

  43. Lehmann K et al. Raf induces TGF-β production while blocking its apoptotic but not invasive responses: a mechanism leading to increased malignancy in epithelial cells Genes Dev 2000 14: 2610–2622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lin HY et al. Expression cloning of the TGF-beta type II receptor, a functional transmembrane serine/threonine kinase Cell 1992 68: 775–785

    Article  CAS  PubMed  Google Scholar 

  45. deCaestecker MP, Piek E, Roberts AB . Role of transforming growth factor-beta signaling in cancer J Natl Cancer Inst 2000 92: 1388–1402

    Article  CAS  Google Scholar 

  46. Massague J . How cells read TGF-beta signals Nat Rev Mol Cell Biol 2000 1: 169–178

    Article  CAS  PubMed  Google Scholar 

  47. Massague J, Blain SW, Lo RS . TGF-beta signaling in growth control, cancer, and heritable disorders Cell 2000 103: 295–309

    Article  CAS  PubMed  Google Scholar 

  48. Brodin G et al. Increased Smad expression and activation are associated with apoptosis in normal and malignant prostate after castration Cancer Res 1999 59: 2731–2738

    CAS  PubMed  Google Scholar 

  49. Kim IY et al. Loss of expression of transforming growth factor beta type I and type II receptors correlates with tumor grade in human prostate cancer tissues Clin Cancer Res 1996 2: 1255–1261

    CAS  PubMed  Google Scholar 

  50. Williams RH et al. Reduced levels of transforming growth factor beta receptor type II in human prostate cancer: an immunohistochemical study Clin Cancer Res 1996 2: 635–640

    CAS  PubMed  Google Scholar 

  51. Guo Y, Jacobs SC, Kyprianou N . Down-regulation of protein and mRNA expression for transforming growth factor-β (TGF-β1) Type I and Type II receptors in human prostate cancer Int J Cancer 1997 71: 573–579

    Article  CAS  PubMed  Google Scholar 

  52. Guo Y, Kyprianou N . Overexpression of transforming growth factor (TGF) beta l type II receptor restores TGF-beta l sensitivity and signaling in human prostate cancer cells Cell Growth Differ 1998 9: 185–193

    CAS  PubMed  Google Scholar 

  53. Tsukazaki T et al. SARA, a FYVE domain protein that recruits Smad2 to the TGF beta receptor Cell 1998 95: 779–791

    Article  CAS  PubMed  Google Scholar 

  54. Liu F, Pouponnot C, Massague J . Dual role of the Smad4/DPC4 tumor suppressor in TGFbeta-inducible transcriptional complexes Genes Dev 1997 11: 3157–3167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kim SK et al. DPC4, a candidate tumor suppressor gene, is altered infrequently in head and neck squamous cell carcinoma Cancer Res 1996 56: 2519–2521

    CAS  PubMed  Google Scholar 

  56. Muro-Cacho CA, Rosario-Ortiz K, Livingston S, Munoz-Antonia T . Defective transforming growth factor beta signaling pathway in head and neck squamous cell carcinoma as evidenced by the lack of expression of activated Smad2 Clin Cancer Res 2001 7: 1618–1626

    CAS  PubMed  Google Scholar 

  57. Glassman DT et al. Combined effect of terazosin and finasteride on apoptosis, cell proliferation and transforming growth factor-β expression in benign prostatic hyperplasia Prostate 2001 46: 45–51

    Article  CAS  PubMed  Google Scholar 

  58. Chen W, Frank ME, Jin W, Wahl SM . TGF-beta released by apoptotic T cells contributes to an immunosuppressive milieu Immunity 2001 14: 715–725

    Article  CAS  PubMed  Google Scholar 

  59. Fabregat I et al. Epidermal growth factor impairs the cytochrome C/caspase-3 apoptotic pathway induced by transforming growth factor beta in rat fetal hepatocytes via a phosphoinositide 3-kinase-dependent pathway Hepatology 2000 32: 528–535

    Article  CAS  PubMed  Google Scholar 

  60. Chen RH, Su YH, Chuang RL, Chang TY . Suppression of transforming growth factor-beta-induced apoptosis through a phosphatidylinositol 3-kinase/Akt-dependent pathway Oncogene 1998 17: 1959–1968

    Article  CAS  PubMed  Google Scholar 

  61. Lin HK, Yeh S, Kang HY, Chang C . Akt suppresses androgen-induced apoptosis by phosphorylating and inhibiting androgen receptor Proc Natl Acad Sci USA 2001 98: 7200–7205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Grasso AW et al. ErbB kinases and NDF signaling in human prostate cancer cells Oncogene 1997 15: 2705–2716

    Article  CAS  PubMed  Google Scholar 

  63. Baldwin AS Jr . The NF-κB and IκB Proteins: New discoveries and insights Ann Rev Immunol 1996 14: 649–681

    Article  CAS  Google Scholar 

  64. Ibrahim GK et al. Differential immunoreactivity of Her-2/neu oncoprotein in prostatic tissues Surg Oncol 1992 1: 151–155

    Article  CAS  PubMed  Google Scholar 

  65. Harper ME et al. Expression of androgen receptor and growth factors in premalignant lesions of the prostate J Pathol 1998 186: 169–177

    Article  CAS  PubMed  Google Scholar 

  66. Schwartz S Jr et al. Gains of the relative genomic content of erbB-1 and erbB-2 in prostate carcinoma and their association with metastasis Int J Oncol 1999 14: 367–371

    CAS  PubMed  Google Scholar 

  67. Kretzschmar M, Doody J, Timokhina I, Massague J . A mechanism of repression of TGFbeta/Smad signaling by oncogenic Ras Genes Dev 1999 13: 804–816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Lo RS, Wotton D, Massague J . Epidermal growth factor signaling via Ras controls the Smad transcriptional co-repressor TGIF EMBO J 2001 20: 128–136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Habib AA et al. The epidermal growth factor receptor engages receptor interacting protein and nuclear factor-kappa B (NF-kappa B)-inducing kinase to activate NF-kappa B. Identification of a novel receptor-tyrosine kinase signalosome J Biol Chem 2001 276: 8865–8874

    Article  CAS  PubMed  Google Scholar 

  70. Yeh S et al. From HER2/Neu signal cascade to androgen receptor and its coactivators: a novel pathway by induction of androgen target genes through MAP kinase in prostate cancer cells J Biol Chem 1999 96: 5458–5463

    CAS  Google Scholar 

  71. Craft N, Shostak Y, Carey M, Sawyers CL . A mechanism for hormone-independent prostate cancer through modulation of androgen receptor signalling by the HER2/neu tyrosine kinase Nature Medicine 1999 5: 280–285

    Article  CAS  PubMed  Google Scholar 

  72. Wen Y et al. HER-2/neu promotes androgen-independent survival and growth of prostate cancer cells through the Akt pathway Cancer Res 2000 60: 6841–6845

    CAS  PubMed  Google Scholar 

  73. del Peso L et al. Interleukin-3-induced phosphorylation of BAD through the protein kinase Akt Science 1997 278: 687–689

    Article  CAS  PubMed  Google Scholar 

  74. Bitzer M et al. A mechanism of suppression of TGF-β/SMAD signaling by NF-κB/Rel A Genes Dev 2000 14: 187–197

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Baeuerle PA, Henkel T . Function and activation of NF-kappa B in the immune system Annu Rev Immunol 1994 12: 141–179

    Article  CAS  PubMed  Google Scholar 

  76. Karin M . How NF-kappaB is activated: the role of the IkappaB kinase (IKK) complex Oncogene 1999 18: 6867–6874

    Article  CAS  PubMed  Google Scholar 

  77. Patil S et al. Smad7 is induced by CD40 and protects WEHI 231 B-lymphocytes from transforming growth factor-beta-induced growth inhibition and apoptosis J Biol Chem 2000 275: 38363–38370

    Article  CAS  PubMed  Google Scholar 

  78. Sovak MA et al. The inhibitory effects of transforming growth factor-β1 on breast cancer cell proliferation are mediated through regulation of aberrant nuclear factor-κB/Rel expression Cell Growth Differentiation 1999 10: 537–544

    CAS  PubMed  Google Scholar 

  79. Erl W et al. Nuclear Factor-κB regulates induction of apoptosis and inhibitor of apoptosis protein-1 expression in vascular smooth muscle cells Circ Res 1999 84: 669–677

    Article  Google Scholar 

  80. Anglin IE, Kyprianou N . Quinazoline based α1-adrenoceptor antagonists activate prostate cancer cell apoptosis via TGF-β signaling and caspase-3 activation Manuscript submitted for publication 2001

  81. Arteaga CL, Ramsey TT, Shawver LK, Guyer CA . Unliganded epidermal growth factor receptor dimerization induced by direct interaction of quinazolines with the ATP binding site J Biol Chem 1997 12: 272 23247–23254

    Article  Google Scholar 

  82. Ciardiello F et al. Inhibition of growth factor production and angiogenesis in human cancer cells by ZD1839 (Iressa), a selective epidermal growth factor receptor tyrosine kinase inhibitor Clin Cancer Res 2001 7: 1459–1465

    CAS  PubMed  Google Scholar 

  83. Bruns CJ et al. Blockade of the epidermal growth factor receptor signaling by a novel tyrosine kinase inhibitor leads to apoptosis of endothelial cells and therapy of human pancreatic carcinoma Cancer Res 2000 60: 2926–2935

    CAS  PubMed  Google Scholar 

  84. Keledjian K et al. Reduction of human prostate tumor vascularity by α1-adrenoreceptor antagonist terazosin Prostate 2001 48: 71–78

    Article  CAS  PubMed  Google Scholar 

  85. Tsou H-R et al. 6-Substituted-4-(3-bromophenylamino) quinazolines as putative irreversible inhibitors of the epidermal growth factor receptor (EGFR) and human epidermal growth factor receptor (HER-2) tyrosine kinases with enhanced antitumor activity J Med Chem 2001 44: 2719–2734

    Article  CAS  PubMed  Google Scholar 

  86. Benning C, Kyprianou N . Quinazoline-derived α1-adrenoceptor antagonists induce prostate cancer cell apoptosis via an α1-adrenoceptor-independent action Cancer Res 2002 (in press)

  87. Rewcastle GW et al. Tyrosine kinase inhibitors. 5. Synthesis and structure-activity relationships for 4-[(phenylmethyl)amino]- and 4-(phenylamino) quinazolines as potent adenosine 5′-triphosphate binding site inhibitors of the tyrosine kinase domain of the epidermal growth factor receptor J Med Chem 1995 38: 3482–3487

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

These studies were supported by educational grants from Pfizer Pharmaceuticals and Abbot International.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N Kyprianou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anglin, I., Glassman, D. & Kyprianou, N. Induction of prostate apoptosis by α1-adrenoceptor antagonists: mechanistic significance of the quinazoline component. Prostate Cancer Prostatic Dis 5, 88–95 (2002). https://doi.org/10.1038/sj.pcan.4500561

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.pcan.4500561

Keywords

This article is cited by

Search

Quick links