Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Progress in high throughput SNP genotyping methods

Abstract

Most current single nucleotide polymorphism (SNP) genotyping methods are still too slow and expensive for routine use in large association studies with hundreds or more SNPs in a large number of DNA samples. However, SNP genotyping technology is rapidly progressing with the emergence of novel, faster and cheaper methods as well as improvements in the existing methods. In this review, we focus on technologies aimed at high throughput uses, and discuss the technical advances made in this field in the last few years. The rapid progress in technology, in combination with the discovery of millions of SNPs and the development of the human haplotype map, may enable whole genome association studies to be initiated in the near future.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Landegren U, Nilsson M, Kwok P . Reading bits of genetic information: methods for single-nucleotide polymorphism analysis Genome Res 1998 8: 769–776

    Article  CAS  PubMed  Google Scholar 

  2. Kwok P . High-throughput genotyping assay approaches Pharmacogenomics 2000 1: 95–100

    Article  CAS  PubMed  Google Scholar 

  3. Gut I . Automation in genotyping of single nucleotide polymorphisms Hum Mutat 2001 17: 475–492

    Article  CAS  PubMed  Google Scholar 

  4. Whitcombe D, Newton C, Little S . Advances in approaches to DNA-based diagnostics Curr Opin Biotechnol 1998 9: 602–608

    Article  CAS  PubMed  Google Scholar 

  5. Tillib S, Mirzabekov A . Advances in the analysis of DNA sequence variations using oligonucleotide microchip technology Curr Opin Biotechnol 2001 12: 53–58

    Article  CAS  PubMed  Google Scholar 

  6. Kwok P . Methods for genotyping single nucleotide polymorphisms Annu Rev Genomics Hum Genet 2001 2: 235–258

    Article  CAS  PubMed  Google Scholar 

  7. Winzeler E et al . Direct allelic variation scanning of the yeast genome Science 1998 281: 1194–1197

    Article  CAS  PubMed  Google Scholar 

  8. Lyamichev V et al . Polymorphism identification and quantitative detection of genomic DNA by invasive cleavage of oligonucleotide probes Nat Biotechnol 1999 17: 292–296

    Article  CAS  PubMed  Google Scholar 

  9. Hall J et al . Sensitive detection of DNA polymorphisms by the serial invasive signal amplification reaction Proc Natl Acad Sci U S A 2000 97: 8272–8277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mein C et al . Evaluation of single nucleotide polymorphism typing with invader on PCR amplicons and its automation Genome Res 2000 10: 333–343

    Article  Google Scholar 

  11. Ohnishi Y et al . A high-throughput SNP typing system for genome-wide association studies J Hum Genet 2001 46: 471–477

    Article  CAS  PubMed  Google Scholar 

  12. Nilsson M et al . Padlock probes: circularizing oligonucleotides for localized DNA detection Science 1994 265: 2085–2088

    Article  CAS  PubMed  Google Scholar 

  13. Baner J, Nilsson M, Mendel-Hartvig M, Landegren U . Signal amplification of padlock probes by rolling circle replication Nucleic Acids Res 1998 26: 5073–5078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Baner J et al . More keys to padlock probes: mechanisms for high-throughput nucleic acid analysis Curr Opin Biotechnol 2001 12: 11–15

    Article  CAS  PubMed  Google Scholar 

  15. Hatch A, Sano T, Misasi J, Smith C . Rolling circle amplification of DNA immobilized on solid surfaces and its application to multiplex mutation detection Genet Anal 1999 15: 35–40

    Article  CAS  PubMed  Google Scholar 

  16. Lizardi P et al . Mutation detection and single-molecule counting using isothermal rolling-circle amplification Nat Genet 1998 19: 225–232

    Article  CAS  PubMed  Google Scholar 

  17. Zhong X, Lizardi P, Huang X, Bray-Ward P, Ward D . Visualization of oligonucleotide probes and point mutations in interphase nuclei and DNA fibers using rolling circle DNA amplification Proc Natl Acad Sci U S A 2001 98: 3940–3945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Nickerson D et al . Automated DNA diagnostics using an ELISA-based oligonucleotide ligation assay Proc Natl Acad Sci U S A 1990 87: 8923–8927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Faruqi F et al . High-throughput genotyping of single nucleotide polymorphisms with rolling circle amplification BMC Genomics 2001 2: 4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Livak K . Allelic discrimination using fluorogenic probes and the 5′ nuclease assay Genet Anal 1999 14: 143–149

    Article  CAS  PubMed  Google Scholar 

  21. Marras S, Kramer F, Tyagi S . Multiplex detection of single-nucleotide variations using molecular beacons Genet Anal 1999 14: 151–156

    Article  CAS  PubMed  Google Scholar 

  22. Thelwell N, Millington S, Solinas A, Booth J, Brown T . Mode of action and application of Scorpion primers to mutation detection Nucleic Acids Res 2000 28: 3752–3761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Whitcombe D, Theaker J, Guy S, Brown T, Little S . Detection of PCR products using self-probing amplicons and fluorescence Nat Biotechnol 1999 17: 804–807

    Article  CAS  PubMed  Google Scholar 

  24. Ranade K et al . High-throughput genotyping with single nucleotide polymorphisms Genome Res 2001 11: 1262–1268

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Myakishev M, Khripin Y, Hu S, Hamer D . High-throughput SNP genotyping by allele-specific PCR with universal energy-transfer-labeled primers Genome Res 2001 11: 163–169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Beaudet L, Bedard J, Breton B, Mercuri R, Budarf M . Homogeneous assays for single-nucleotide polymorphism typing using AlphaScreen Genome Res 2001 11: 600–608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chen X, Levine L, PY K . Fluorescence polarization in homogeneous nucleic acid analysis Genome Res 1999 9: 492–498

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Gibson N et al . A homogeneous method for genotyping with fluorescence polarization Clin Chem 1997 43: 1336–1341

    CAS  PubMed  Google Scholar 

  29. Latif S, Bauer-Sardina I, Ranade K, Livak K, Py K . Fluorescence polarization in homogeneous nucleic acid analysis II: 5′-nuclease assay Genome Res 2001 11: 436–440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hsu T, Law S, Duan S, Neri B, Kwok P . Genotyping single-nucleotide polymorphisms by the invader assay with dual-color fluorescence polarization detection Clin Chem 2001 47: 1373–1377

    CAS  PubMed  Google Scholar 

  31. Hsu T, Chen X, Duan S, Miller R, Kwok P . Universal SNP genotyping assay with fluorescence polarization detection Biotechniques 2001 31: 560 562 564–568

    Article  CAS  PubMed  Google Scholar 

  32. Alderborn A, Kristofferson A, Hammerling U . Determination of single-nucleotide polymorphisms by real-time pyrophosphate DNA sequencing Genome Res 2000 10: 1249–1258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ronaghi M, Uhlen M, Nyren P . A sequencing method based on real-time pyrophosphate Science 1998 281: 363–365

    Article  CAS  PubMed  Google Scholar 

  34. Ronaghi M . Pyrosequencing sheds light on DNA sequencing Genome Res 2001 11: 3–11

    Article  CAS  PubMed  Google Scholar 

  35. Pease A et al . Light-generated oligonucleotide arrays for rapid DNA sequence analysis Proc Natl Acad Sci U S A 1994 91: 5022–5026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Southern E, Maskos U, Elder J . Analyzing and comparing nucleic acid sequences by hybridization to arrays of oligonucleotides: evaluation using experimental models Genomics 1993 13: 1008–1017

    Article  Google Scholar 

  37. Wang D et al . Large-scale identification, mapping, and genotyping of single-nucleotide polymorphisms in the human genome Science 1998 280: 1077–1082

    Article  CAS  PubMed  Google Scholar 

  38. Brown P, Botstein D . Exploring the new world of the genome with DNA microarrays Nat Genet 1999 21: 33–37

    Article  CAS  PubMed  Google Scholar 

  39. Cargill M et al . Characterization of single-nucleotide polymorphisms in coding regions of human genes Nat Genet 1999 22: 231–238

    Article  CAS  PubMed  Google Scholar 

  40. Dong S et al . Flexible use of high-density oligonucleotide arrays for single-nucleotide polymorphism discovery and validation Genome Res 2001 11: 1418–1424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Halushka M et al . Patterns of single-nucleotide polymorphisms in candidate genes for blood-pressure homeostasis Nat Genet 1999 22: 239–247

    Article  CAS  PubMed  Google Scholar 

  42. Hacia J . Resequencing and mutational analysis using oligonucleotide microarrays Nat Genet 1999 21: 42–47

    Article  CAS  PubMed  Google Scholar 

  43. Lipshutz R, Fodor S, Gingeras T, Lockhart D . High density synthetic oligonucleotide arrays Nat Genet 1999 21: 20–24

    Article  CAS  PubMed  Google Scholar 

  44. Sapolsky R et al . High-throughput polymorphism screening and genotyping with high-density oligonucleotide arrays Genet Anal 1999 14: 187–192

    Article  CAS  PubMed  Google Scholar 

  45. Tsuchihashi Z, Brown P . DNA strand exchange and selective DNA annealing promoted by the human immunodeficiency virus type 1 nucleocapsid protein J Virol 1994 68: 5863

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Herschlag D . RNA chaperones and the RNA folding problem J Biol Chem 1995 270: 20871–20874

    Article  CAS  PubMed  Google Scholar 

  47. Head S et al . Nested genetic bit analysis (N-GBA) for mutation detection in the p53 tumor suppressor gene Nucleic Acids Res 1997 25: 5065–5071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Nikiforov T et al . Genetic Bit Analysis: a solid phase method for typing single nucleotide polymorphisms Nucleic Acids Res 1994 22: 4167–4175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Syvanen A et al . Convenient and quantitative determination of the frequency of a mutant allele using solid-phase minisequencing: application to aspartylglucosaminuria in Finland Genomics 1992 12: 590–595

    Article  CAS  PubMed  Google Scholar 

  50. Shumaker J, Metspalu A, Caskey C . Mutation detection by solid phase primer extension Hum Mutat 1996 7: 346–354

    Article  CAS  PubMed  Google Scholar 

  51. Lindroos K, Liljedahl U, Raitio M, Syvanen A . Minisequencing on oligonucleotide microarrays: comparison of immobilisation chemistries Nucleic Acids Res 2001 29: E69–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lindblad-Toh K et al . Large-scale discovery and genotyping of single-nucleotide polymorphisms in the mouse Nat Genet 2000 24: 381–386

    Article  CAS  PubMed  Google Scholar 

  53. Pastinen T et al . A system for specific, high-throughput genotyping by allele-specific primer extension on microarrays Genome Res 2000 10: 1031–1042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Fan J et al . Parallel genotyping of human SNPs using generic high-density oligonucleotide tag arrays Genome Res 2000 10: 853–860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hirschhorn J et al . SBE-TAGS: an array-based method for efficient single-nucleotide polymorphism genotyping Proc Natl Acad Sci U S A 2000 97: 12164–12169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Bouchie A . Haplotype map planned Nat Biotechnol 2001 19: 704

    PubMed  Google Scholar 

  57. Hensel M et al . Simultaneous identification of bacterial virulence genes by negative selection Science 1995 269: 400–403

    Article  CAS  PubMed  Google Scholar 

  58. Shoemaker D, Lashkari D, Morris D, Mittmann M, Davis R . Quantitative phenotypic analysis of yeast deletion mutants using a highly parallel molecular bar-coding strategy Nat Genet 1996 14: 450–456

    Article  CAS  PubMed  Google Scholar 

  59. Gerry N et al . Universal DNA microarray method for multiplex detection of low abundance point mutations J Mol Biol 1999 292: 251–262

    Article  CAS  PubMed  Google Scholar 

  60. Ladner D et al . Multiplex detection of hotspot mutations by rolling circle-enabled universal microarrays Lab Invest 2001 81: 1079–1086

    Article  CAS  PubMed  Google Scholar 

  61. Iannone M et al . Multiplexed single nucleotide polymorphism genotyping by oligonucleotide ligation and flow cytometry Cytometry 2000 39: 131–140

    Article  CAS  PubMed  Google Scholar 

  62. Fulton R, McDade R, Smith P, Kienker L, Kettman J . J. Advanced multiplexed analysis with the FlowMetrix system Clin Chem 1997 43: 1749–1756

    CAS  PubMed  Google Scholar 

  63. Armstrong B ., Stewart M, Mazumder A. Suspension arrays for high throughput, multiplexed single nucleotide polymorphism genotyping Cytometry 2000 40: 102–108

    Article  CAS  PubMed  Google Scholar 

  64. Cai H et al . Flow cytometry-based minisequencing: a new platform for high-throughput single-nucleotide polymorphism scoring Genomics 2000 69: 395

    Article  CAS  Google Scholar 

  65. Chen J et al . A microsphere-based assay for multiplexed single nucleotide polymorphism analysis using single base chain extension Genome Res 2000 10: 549–557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Ye F et al . Fluorescent microsphere-based readout technology for multiplexed human single nucleotide polymorphism analysis and bacterial identification Hum Mutat 2001 17: 305–316

    Article  CAS  PubMed  Google Scholar 

  67. Michael K ., Taylor L., Schultz S, Walt D. Randomly ordered addressable high-density optical sensor arrays Anal Chem 1998 70: 1242–1248

    Article  CAS  PubMed  Google Scholar 

  68. Steemers F ., Ferguson J, Walt D. Screening unlabeled DNA targets with randomly ordered fiber-optic gene arrays Nat Biotechnol 2000 18: 91–94

    Article  CAS  PubMed  Google Scholar 

  69. Chan W, Nie S . Quantum dot bioconjugates for ultrasensitive nonisotopic detection Science 1998 281: 2016–2018

    Article  CAS  PubMed  Google Scholar 

  70. Han M, Gao X, Su J, Nie S . Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules Nat Biotechnol 2001 19: 631–635

    Article  CAS  PubMed  Google Scholar 

  71. Griffin T, Smith L . Single-nucleotide polymorphism analysis by MALDI-TOF mass spectrometry Trends Biotechnol 2000 18: 77–84

    Article  CAS  PubMed  Google Scholar 

  72. Jackson P, Scholl P, Groopman J . Mass spectrometry for genotyping: an emerging tool for molecular medicine Mol Med Today 2000 6: 271–276

    Article  CAS  PubMed  Google Scholar 

  73. Haff L, Smirnov I . Single-nucleotide polymorphism identification assays using a thermostable DNA polymerase and delayed extraction MALDI-TOF mass spectrometry Genome Res 1997 7: 378–388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ross P, Hall L, Smirnov I, Haff L . High level multiplex genotyping by MALDI-TOF mass spectrometry Nat Biotechnol 1998 16: 1347–1351

    Article  CAS  PubMed  Google Scholar 

  75. Bray M, Boerwinkle E, Doris P . High-throughput multiplex SNP genotyping with MALDI-TOF mass spectrometry: practice, problems and promise Hum Mutat 2001 17: 296–304

    Article  CAS  PubMed  Google Scholar 

  76. Sauer S et al . A novel procedure for efficient genotyping of single nucleotide polymorphisms Nucleic Acids Res 2000 28: E13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Sauer S et al . Full flexibility genotyping of single nucleotide polymorphisms by the GOOD assay Nucleic Acids Res 2000 28: E100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Sun X, Ding H, Hung K, Guo B . A new MALDI-TOF based mini-sequencing assay for genotyping of SNPS Nucleic Acids Res 2000 28: E68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Tang K et al . Chip-based genotyping by mass spectrometry Proc Natl Acad Sci U S A 1999 91: 10016–10020

    Article  Google Scholar 

  80. Li J et al . Single nucleotide polymorphism determination using primer extension and time-of-flight mass spectrometry Electrophoresis 1999 20: 1258–1265

    Article  CAS  PubMed  Google Scholar 

  81. Little D, Braun A, O'Donnell M, Koster H . Mass spectrometry from miniaturized arrays for full comparative DNA analysis Nat Med 1997 3: 1413–1416

    Article  CAS  PubMed  Google Scholar 

  82. Little D et al . MALDI on a chip: analysis of arrays of low-femtomole to subfemtomole quantities of synthetic oligonucleotides and DNA diagnostic products dispensed by a piezoelectric pipet Anal Chem 1997 69: 4540–4546

    Article  CAS  Google Scholar 

  83. Griffin T, Tang W, Smith L . Genetic analysis by peptide nucleic acid affinity MALDI-TOF mass spectrometry Nat Biotechnol 1997 15: 1368–1372

    Article  CAS  PubMed  Google Scholar 

  84. Ross P, Lee K, Belgrader P . Discrimination of single-nucleotide polymorphisms in human DNA using peptide nucleic acid probes detected by MALDI-TOF mass spectrometry Anal Chem 1997 69: 4197–4202

    Article  CAS  PubMed  Google Scholar 

  85. Jiang-Baucom P, Girard J, Butler J, Belgrader P . DNA typing of human leukocyte antigen sequence polymorphisms by peptide nucleic acid probes and MALDI-TOF mass spectrometry Anal Chem 1997 69: 4894–4898

    Article  CAS  PubMed  Google Scholar 

  86. Griffin T, Hall J, Prudent J, Smith L . Direct genetic analysis by matrix-assisted laser desorption/ionization mass spectrometry Proc Natl Acad Sci U S A 1996 96: 6301–6306

    Article  Google Scholar 

  87. Kokoris M et al . High-throughput SNP genotyping with the Masscode system Mol Diagn 2000 5: 329–340

    Article  CAS  PubMed  Google Scholar 

  88. Jurinke C, van den Boom D, Cantor C, Koster H . Automated genotyping using the DNA MassArray technology Methods Mol Biol 2001 170: 103–116

    CAS  PubMed  Google Scholar 

  89. Taranenko N et al . Laser desorption mass spectrometry for point mutation detection Genet Anal 1996 13: 87–94

    Article  CAS  PubMed  Google Scholar 

  90. Howell W, Jobs M, Gyllensten U, Brookes A . Dynamic allele-specific hybridization. A new method for scoring single nucleotide polymorphisms Nat Biotechnol 1999 17: 87–88

    Article  CAS  PubMed  Google Scholar 

  91. Prince J et al . Robust and accurate single nucleotide polymorphism genotyping by dynamic allele-specific hybridization (DASH): design criteria and assay validation Genome Res 2001 11: 152–162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Daly M, Rioux J, Schaffner S, Hudson T, Lander E . High-resolution haplotype structure in the human genome Nat Genet 2001 29: 229–232

    Article  CAS  PubMed  Google Scholar 

  93. Patil N et al . Blocks of limited haplotype diversity revealed by high-resolution scanning of human chromosome 21 Science 2001 294: 1719–1723

    Article  CAS  PubMed  Google Scholar 

  94. Reich D et al . Linkage disequilibrium in the human genome Nature 2001 411: 199–204

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z Tsuchihashi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsuchihashi, Z., Dracopoli, N. Progress in high throughput SNP genotyping methods. Pharmacogenomics J 2, 103–110 (2002). https://doi.org/10.1038/sj.tpj.6500094

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.tpj.6500094

This article is cited by

Search

Quick links