Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Analysis of nucleotide diversity of NAT2 coding region reveals homogeneity across Native American populations and high intra-population diversity

Abstract

N-acetyltransferase 2 (NAT2), an important enzyme in clinical pharmacology, metabolizes antibiotics such as isoniazid and sulfamethoxazole, and catalyzes the transformation of aromatic and heterocyclic amines from the environment and diet into carcinogenic intermediates. Polymorphisms in NAT2 account for variability in the acetylator phenotype and the pharmacokinetics of metabolized drugs. Native Americans, settled in rural areas and large cities of Latin America, are under-represented in pharmacogenetics studies; therefore, we sequenced the coding region of NAT2 in 456 chromosomes from 13 populations from the Americas, and two from Siberia, detecting nine substitutions and 11 haplotypes. Variants *4 (37%), *5B (23%) and *7B (24%) showed high frequencies. Average frequencies of fast, intermediate and slow acetylators across Native Americans were 18, 56 and 25%, respectively. NAT2 intra-population genetic diversity for Native Americans is higher than East Asians and similar to the rest of the world, and NAT2 variants are homogeneously distributed across native populations of the continent.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. American Thoracic Society/Centers for Disease Control and Prevention/Infectious Diseases Society of America. Treatment of tuberculosis. Am J Respir Crit Care Med 2003; 167: 603–662.

  2. Grimwade K, Gilks C . Cotrimoxazole prophylaxis in adults infected with HIV in low-income countries. Curr Opin Infect Dis 2001; 14: 507–512.

    Article  CAS  PubMed  Google Scholar 

  3. Hein DW . Molecular genetics and function of NAT1 and NAT2: role in aromatic amine metabolism and carcinogenesis. Mutat Res 2002; 506–507: 65–77.

    Article  PubMed  Google Scholar 

  4. Grantham R . Amino acid difference formula to help explain protein evolution. Science 1974; 185: 862–864.

    Article  CAS  PubMed  Google Scholar 

  5. Blum M, Grant DM, McBride W, Heim M, Meyer UA . Human arylamine N-acetyltransferase genes: isolation, chromosomal localization, and functional expression. DNA Cell Biol 1990; 9: 193–203.

    Article  CAS  PubMed  Google Scholar 

  6. Cascorbi I, Drakoulis N, Brockmoller J, Maurer A, Sperling K, Roots I . Arylamine N-acetyltransferase (NAT2) mutations and their allelic linkage in unrelated Caucasian individuals: correlation with phenotypic activity. Am J Hum Genet 1995; 57: 581–592.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hein DW, Doll MA, Fretland AJ, Leff MA, Webb SJ, Xiao GH et al. Molecular genetics and epidemiology of the NAT1 and NAT2 acetylation polymorphisms. Cancer Epidemiol Biomarkers Prev 2000; 9: 29–42.

    CAS  PubMed  Google Scholar 

  8. Shishikura K, Hohjoh H, Tokunaga K . Novel allele containing 190C>T nonsynonymous substitution in the N-acetyltransferase (NAT2) gene. Hum Mut 2000; 15: 581.

    Article  CAS  PubMed  Google Scholar 

  9. Zang Y, Zhao S, Doll MA, States JC, Hein DW . The T341C (Ile114Thr) polymorphism of N-acetyltransferase 2 yields slow acetylator phenotype by enhanced protein degradation. Pharmacogenetics 2004; 14: 717–723.

    Article  CAS  PubMed  Google Scholar 

  10. Lin HJ, Han CY, Lin BK, Hardy S . Ethnic distribution of slow acetylator mutations in the polymorphic N-acetyltransferase (NAT2) gene. Pharmacogenetics 1994; 4: 125–134.

    Article  CAS  PubMed  Google Scholar 

  11. Cascorbi I, Roots I . Pitfalls in N-acetyltransferase 2 genotyping. Pharmacogenetics 1999; 9: 123–127.

    Article  CAS  PubMed  Google Scholar 

  12. Donald PR, Sirgel FA, Venter A, Parkin DP, Seifart HI, van de Wal BW et al. The influence of human N-acetyltransferase genotype on the early bactericidal activity of isoniazid. Clin Infect Dis 2004; 39: 1425–1430.

    Article  CAS  PubMed  Google Scholar 

  13. Parkin DP, Vandenplas S, Botha FJ, Vandenplas ML, Seifart HI, van Helden PD et al. Trimodality of isoniazid elimination: phenotype and genotype in patients with tuberculosis. Am J Respir Crit Care Med 1997; 155: 1717–1722.

    Article  CAS  PubMed  Google Scholar 

  14. Kaufmann GR, Wenk M, Taeschner W, Peterli B, Gyr K, Meyer UA et al. N-acetyltransferase 2 polymorphism in patients infected with human immunodeficiency virus. Clin Pharmacol Ther 1996; 60: 62–67.

    Article  CAS  PubMed  Google Scholar 

  15. O'Neil WM, Drobitch RK, MacArthur RD, Farrough MJ, Doll MA, Fretland AJ et al. Acetylator phenotype and genotype in patients infected with HIV: discordance between methods for phenotype determination and genotype. Pharmacogenetics 2000; 10: 171–182.

    Article  CAS  PubMed  Google Scholar 

  16. Evans DAP, Manley KA, McKusick VA . Genetic control of isoniazid metabolism in man. BMJ 1960; 2: 485–491.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Siddiqui MA, Khan IA . Isoniazid-induced lupus erythematosus presenting with cardiac tamponade. Am J Ther 2002; 9: 163–165.

    Article  PubMed  Google Scholar 

  18. Maddrey WC . Drug-induced hepatotoxicity: 2005. J Clin Gastroenterol 2005; 39 (Suppl 2): S83–S89.

    Article  PubMed  Google Scholar 

  19. Mitchison DA . How drug resistance emerges as a result of poor compliance during short course chemotherapy for tuberculosis. Int J Tuberc Lung Dis 1998; 2: 10–15.

    CAS  PubMed  Google Scholar 

  20. Pande JN, Singh SP, Khilnani GC, Khilnani S, Tandon RK . Risk factors for hepatotoxicity from antituberculosis drugs: a case–control study. Thorax 1996; 51: 132–136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ohno M, Yamaguchi I, Yamamoto I, Fukuda T, Yokota S, Maekura R et al. Slow N-acetyltransferase 2 genotype affects the incidence of isoniazid and rifampicin-induced hepatotoxicity. Int J Tuberc Lung Dis 2000; 4: 256–261.

    CAS  PubMed  Google Scholar 

  22. Yew WW . Risk factors for hepatotoxicity during anti-tuberculosis chemotherapy in Asian populations. Int J Tuberc Lung Dis 2001; 5: 99–100.

    CAS  PubMed  Google Scholar 

  23. Huang YS, Chern HD, Su WJ, Wu JC, Lai SL, Yang SY et al. Polymorphism of the N-acetyltransferase 2 gene as a susceptibility risk factor for antituberculosis drug-induced hepatitis. Hepatology 2002; 35: 883–889.

    Article  CAS  PubMed  Google Scholar 

  24. Mitchell JR, Long MW, Thorgeirsson UP, Jollow DJ . Acetylation rates and monthly liver function tests during one year of isoniazid preventive therapy. Chest 1975; 68: 181–190.

    Article  CAS  PubMed  Google Scholar 

  25. Yamamoto T, Suou T, Hirayama C . Elevated serum aminotransferase induced by isoniazid in relation to isoniazid acetylator phenotype. Hepatology 1986; 6: 295–298.

    Article  CAS  PubMed  Google Scholar 

  26. Santos FR, Pandya A, Tyler-Smith C, Pena SD, Schanfield M, Leonard WR et al. The central Siberian origin for native American Y chromosomes. Am J Hum Genet 1999; 64: 619–628.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zegura SL, Karafet TM, Zhivotovsky LA, Hammer MF . High-resolution SNPs and microsatellite haplotypes point to a single, recent entry of Native American Y chromosomes into the Americas. Mol Biol Evol 2004; 21: 164–175.

    Article  CAS  PubMed  Google Scholar 

  28. Arias TD, Jorge LF, Griese EU, Inaba T, Eichelbaum M . Polymorphic N-acetyltransferase (NAT2) in Amerindian populations of Panama and Colombia: high frequencies of point mutation 857A, as found in allele S3/M3. Pharmacogenetics 1993; 3: 328–331.

    Article  CAS  PubMed  Google Scholar 

  29. Jorge-Nebert LF, Eichelbaum M, Griese EU, Inaba T, Arias TD . Analysis of six SNPs of NAT2 in Ngawbe and Embera Amerindians of Panama and determination of the Embera acetylation phenotype using caffeine. Pharmacogenetics 2002; 12: 39–48.

    Article  CAS  PubMed  Google Scholar 

  30. Wright S . Isolation by distance. Genetics 1943; 28: 114–138.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Fuselli S, Tarazona-Santos E, Dupanloup I, Soto A, Luiselli D, Pettener D . Mitochondrial DNA diversity in South America and the genetic history of Andean highlanders. Mol Biol Evol 2003; 20: 1682–1691.

    Article  CAS  PubMed  Google Scholar 

  32. Fretland AJ, Leff MA, Doll MA, Hein DW . Functional characterization of human N-acetyltransferase 2 (NAT2) single nucleotide polymorphisms. Pharmacogenetics 2001; 11: 207–215.

    Article  CAS  PubMed  Google Scholar 

  33. Patin E, Barreiro LB, Sabeti PC, Austerlitz F, Luca F, Sajantila A et al. Deciphering the ancient and complex evolutionary history of human arylamine N-acetyltransferase genes. Am J Hum Genet 2006; 78: 423–436.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sekine A, Saito S, Iida A, Mitsunobu Y, Higuchi S, Harigae S et al. Identification of single-nucleotide polymorphisms (SNPs) of human N-acetyltransferase genes NAT1, NAT2, AANAT, ARD1 and L1CAM in the Japanese population. J Hum Genet 2001; 46: 314–319.

    Article  CAS  PubMed  Google Scholar 

  35. Lee SY, Lee KA, Ki CS, Kwon OJ, Kim HJ, Chung MP et al. Complete sequencing of a genetic polymorphism in NAT2 in the Korean population. Clin Chem 2002; 48: 775–777.

    CAS  PubMed  Google Scholar 

  36. Grant DM, Hughes NC, Janezic SA, Goodfellow GH, Chen HJ, Gaedigk A et al. Human acetyltransferase polymorphisms. Mutat Res 1997; 376: 61–70.

    Article  CAS  PubMed  Google Scholar 

  37. Meyer UA, Zanger UM . Molecular mechanisms of genetic polymorphisms of drug metabolism. Annu Rev Pharmacol Toxicol 1997; 37: 269–296.

    Article  CAS  PubMed  Google Scholar 

  38. Delomenie C, Sica L, Grant DM, Krishnamoorthy R, Dupret J-M . Genotyping of the polymorphic N-acetyltransferase (NAT2*) gene locus in two native African populations. Pharmacogenetics 1996; 6: 177–185.

    Article  CAS  PubMed  Google Scholar 

  39. Rosenberg NA, Pritchard JK, Weber JL, Cann HM, Kidd KK, Zhivotovsky LA et al. Genetic structure of human populations. Science 2002; 298: 2381–2385.

    Article  CAS  PubMed  Google Scholar 

  40. Tarazona-Santos E, Carvalho-Silva DR, Pettener D, Luiselli D, De Stefano GF, Labarga CM et al. Genetic differentiation in South Amerindians is related to environmental and cultural diversity: evidence from the Y chromosome. Am J Hum Genet 2001; 68: 1485–1496.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Nei M . Molecular Evolutionary Genetics. Columbia University Press: New York, 1987.

    Google Scholar 

  42. Tajima F . Evolutionary relationship of DNA sequences in finite populations. Genetics 1983; 105: 437–460.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Watterson GA . On the number of segregating sites in genetical models without recombination. Theor Popul Biol 1975; 7: 256–276.

    Article  CAS  PubMed  Google Scholar 

  44. Jorde LB, Watkins WS, Bamshad MJ, Dixon ME, Ricker CE, Seielstad MT et al. The distribution of human genetic diversity: a comparison of mitochondrial, autosomal, and Y-chromosome data. Am J Hum Genet 2000; 66: 979–988.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Altshuler D, Brooks LD, Chakravarti A, Collins FS, Daly MJ, Donnelly P, International HapMap Consortium. A haplotype map of the human genome. Nature 2005; 437: 1299–1320.

    Article  Google Scholar 

  46. Sokal R . Ecological parameters inferred from spatial correlograms. In G Patil, M Rozenzweig (eds). Contemporary Quantitative Ecology and Related Econometrics. International Co-operative Publishing House: Fairland, MD, 1979, pp 167–196.

    Google Scholar 

  47. Bertorelle G, Barbujani G . Analysis of DNA diversity by spatial autocorrelation. Genetics 1995; 140: 811–819.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Sokal RR, Oden NL . Spatial autocorrelation in biology. 1. Methodology. Biol J Linn Soc 1978; 10: 199–228.

    Article  Google Scholar 

  49. Parra FC, Amado RC, Lambertucci JR, Rocha J, Antunes CM, Pena SD . Color and genomic ancestry in Brazilians. Proc Natl Acad Sci USA 2003; 100: 177–182.

    Article  CAS  PubMed  Google Scholar 

  50. Suarez-Kurtz G . Pharmacogenomics in admixed populations. Trends Pharmacol Sci 2005; 26: 196–201.

    Article  CAS  PubMed  Google Scholar 

  51. Mulligan CJ, Hunley K, Cole S, Long JC . Population genetics, history, and health patterns in native Americans. Annu Rev Genomics Hum Genet 2004; 5: 295–315.

    Article  CAS  PubMed  Google Scholar 

  52. Serre D, Paabo S . Evidence for gradients of human genetic diversity within and among continents. Genome Res 2004; 14: 1679–1685.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ramachandran S, Deshpande O, Roseman CC, Rosenberg NA, Feldman MW, Cavalli-Sforza LL . Support from the relationship of genetic and geographic distance in human populations for a serial founder effect originating in Africa. Proc Natl Acad Sci USA 2005; 102: 15942–15947.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Cavalli-Sforza LL, Menozzi P, Piazza A . The History and Geography of Human Genes. Princeton University Press: Princeton, NJ, 1994.

    Google Scholar 

  55. Barbujani G, Belle EM . Genomic boundaries between human populations. Hum Hered 2006; 61: 15–21.

    Article  PubMed  Google Scholar 

  56. Tajima F . Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 1989; 123: 585–595.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Rickards O, Martinez-Labarga C, Lum JK, De Stefano GF, Cann RL . mtDNA history of the Cayapa Amerinds of Ecuador: detection of additional founding lineages for the Native American populations. Am J Hum Genet 1999; 65: 519–530.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Luiselli D, Simoni L, Tarazona-Santos E, Pastor S, Pettener D . Genetic structure of Quechua-speakers of the Central Andes and geographic patterns of gene frequencies in South Amerindian populations. Am J Phys Anthropol 2000; 113: 5–17.

    Article  CAS  PubMed  Google Scholar 

  59. Cann HM, de Toma C, Cazes L, Legrand MF, Morel V, Piouffre L et al. A human genome diversity cell line panel. Science 2002; 296: 261–262.

    Article  CAS  PubMed  Google Scholar 

  60. Stephens M, Donnelly P . A comparison of Bayesian methods for haplotype reconstruction from population genotype data. Am J Hum Genet 2003; 73: 1162–1169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Clement M, Posada D, Crandall KA . TCS: a computer program to estimate gene genealogies. Mol Ecol 2000; 9: 1657–1659.

    Article  CAS  PubMed  Google Scholar 

  62. Schneider S, Roessli D, Excoffier L . Arlequin Ver. 2.0: A Software for Population Genetics Data Analysis. Genetics and Biometry Laboratory, University of Geneva: Switzerland, 2000.

    Google Scholar 

  63. Rosenberg M . Pattern Analysis, Spatial Statistics, and Geographic Exegesis, version 1.1, 1.1 edn. Department of Biology, Arizona State University: Tempe, 2001.

    Google Scholar 

  64. Pritchard JK, Stephens M, Donnelly P . Inference of population structure using multilocus genotype data. Genetics 2000; 155: 945–959.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to the individuals who, contributing samples, made this study possible; to Cristina Fabbri, Guido Barbujani, Giorgio Bertorelle, Carolina Bonilla and two reviewers for criticisms, to Etienne Patin and Lluis Quintana-Murci for sharing data and to the Brazilian Fundação Nacional do Indio for logistic help. This study was partially funded by grants from the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq-Brazil) to ET-S, FMS and SLB; the University of Bologna to DP, DL and ET-S; the Fundaçao de Amparo à Pesquisa do Estado de Rio Grande do Sul to FMS and SLB, and the Wellcome Trust to CAE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E Tarazona-Santos.

Additional information

Duality of interest

The authors declare that do not have conflict of interest.

Supplementary Information accompanies the paper on the The Pharmacogenomics Journal website (http://www.nature.com/tpj)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fuselli, S., Gilman, R., Chanock, S. et al. Analysis of nucleotide diversity of NAT2 coding region reveals homogeneity across Native American populations and high intra-population diversity. Pharmacogenomics J 7, 144–152 (2007). https://doi.org/10.1038/sj.tpj.6500407

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.tpj.6500407

Keywords

This article is cited by

Search

Quick links