Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Genomic indicators in the blood predict drug-induced liver injury

Abstract

Genomic biomarkers for the detection of drug-induced liver injury (DILI) from blood are urgently needed for monitoring drug safety. We used a unique data set as part of the Food and Drug Administration led MicroArray Quality Control Phase-II (MAQC-II) project consisting of gene expression data from the two tissues (blood and liver) to test cross-tissue predictability of genomic indicators to a form of chemically induced liver injury. We then use the genomic indicators from the blood as biomarkers for prediction of acetaminophen-induced liver injury and show that the cross-tissue predictability of a response to the pharmaceutical agent (accuracy as high as 92.1%) is better than, or at least comparable to, that of non-therapeutic compounds. We provide a database of gene expression for the highly informative predictors, which brings biological context to the possible mechanisms involved in DILI. Pathway-based predictors were associated with inflammation, angiogenesis, Toll-like receptor signaling, apoptosis, and mitochondrial damage. The results show for the first time and support the hypothesis that genomic indicators in the blood can serve as potential diagnostic biomarkers predictive of DILI.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Bushel PR, Heinloth AN, Li J, Huang L, Chou JW, Boorman GA et al. Blood gene expression signatures predict exposure levels. Proc Natl Acad Sci USA 2007; 104: 18211–18216.

    Article  CAS  PubMed  Google Scholar 

  2. Lobenhofer EK, Auman JT, Blackshear PE, Boorman GA, Bushel PR, Cunningham ML et al. Gene expression response in target organ and whole blood varies as a function of target organ injury phenotype. Genome Biol 2008; 9: R100.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Wang K, Zhang S, Marzolf B, Troisch P, Brightman A, Hu Z et al. Circulating microRNAs, potential biomarkers for drug-induced liver injury. Proc Natl Acad Sci USA 2009; 106: 4402–4407.

    Article  CAS  PubMed  Google Scholar 

  4. Waters M, Stasiewicz S, Merrick BA, Tomer K, Bushel P, Paules R et al. CEBS—chemical effects in biological systems: a public data repository integrating study design and toxicity data with microarray and proteomics data. Nucleic Acids Res 2008; 36 (Database issue): D892–D900.

    CAS  PubMed  Google Scholar 

  5. Hubbell E, Liu WM, Mei R . Robust estimators for expression analysis. Bioinformatics (Oxford, England) 2002; 18: 1585–1592.

    Article  CAS  Google Scholar 

  6. Huang L, Heinloth AN, Zeng ZB, Paules RS, Bushel PR . Genes related to apoptosis predict necrosis of the liver as a phenotype observed in rats exposed to a compendium of hepatotoxicants. BMC Genomics 2008; 9: 288.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Bushel PR, Hamadeh H, Bennett L, Sieber S, Martin K, Nuwaysir EF et al. MAPS: a microarray project system for gene expression experiment information and data validation. Bioinformatics (Oxford, England) 2001; 17: 564–565.

    Article  CAS  Google Scholar 

  8. Tong W, Harris S, Cao X, Fang H, Shi L, Sun H et al. Development of public toxicogenomics software for microarray data management and analysis. Mutat Res 2004; 549: 241–253.

    Article  CAS  PubMed  Google Scholar 

  9. Boorman GA, Haseman JK, Waters MD, Hardisty JF, Sills RC . Quality review procedures necessary for rodent pathology databases and toxicogenomic studies: the National Toxicology Program experience. Toxicol Pathol 2002; 30: 88–92.

    Article  PubMed  Google Scholar 

  10. Nikolsky Y, Kirillov E, Zuev R, Rakhmatulin E, Nikolskaya T . Functional analysis of OMICs data and small molecule compounds in an integrated ‘knowledge-based’ platform. Methods Mol Biol (Clifton, NJ) 2009; 563: 177–196.

    Article  CAS  Google Scholar 

  11. Liaw A, Wiener M . Classification and regression by randomForest. R News 2002; 2: 18–22.

    Google Scholar 

  12. Chou JW, Bushel PR . Discernment of possible mechanisms of hepatotoxicity via biological processes over-represented by co-expressed genes. BMC Genomics 2009; 10: 272.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Chou JW, Zhou T, Kaufmann WK, Paules RS, Bushel PR . Extracting gene expression patterns and identifying co-expressed genes from microarray data reveals biologically responsive processes. BMC Bioinformatics 2007; 8: 427.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Hosack DA, Dennis Jr G, Sherman BT, Lane HC, Lempicki RA . Identifying biological themes within lists of genes with EASE. Genome Biol 2003; 4: R70.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Zheng Q, Wang XJ . GOEAST: a web-based software toolkit for Gene Ontology enrichment analysis. Nucleic Acids Res 2008; 36 (Web Server issue): W358–W363.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Alexa A, Rahnenfuhrer J, Lengauer T . Improved scoring of functional groups from gene expression data by decorrelating GO graph structure. Bioinformatics (Oxford, England) 2006; 22: 1600–1607.

    Article  CAS  Google Scholar 

  17. Benjamini Y, Yekutieli D . The control of the false discovery rate in multiple testing under dependency. Ann Stat 2001; 29: 1165–1188.

    Article  Google Scholar 

  18. Casarett LJ, Doull J, Klaassen CD . Casarett and Doull's Toxicology: The Basic Science of Poisons, 6th edn. McGraw-Hill Medical Pub. Division: New York, 2001, xix, 1236 pp.

    Google Scholar 

  19. Neff SB, Neff TA, Kunkel SL, Hogaboam CM . Alterations in cytokine/chemokine expression during organ-to-organ communication established via acetaminophen-induced toxicity. Exp Mol Pathol 2003; 75: 187–193.

    Article  CAS  PubMed  Google Scholar 

  20. Jaeschke H, Hasegawa T . Role of neutrophils in acute inflammatory liver injury. Liver Int 2006; 26: 912–919.

    Article  CAS  PubMed  Google Scholar 

  21. Ramaiah SK, Jaeschke H . Role of neutrophils in the pathogenesis of acute inflammatory liver injury. Toxicol Pathol 2007; 35: 757–766.

    Article  CAS  PubMed  Google Scholar 

  22. Jaeschke H, Gores GJ, Cederbaum AI, Hinson JA, Pessayre D, Lemasters JJ . Mechanisms of hepatotoxicity. Toxicol Sci 2002; 65: 166–176.

    Article  CAS  PubMed  Google Scholar 

  23. Kaplowitz N . Biochemical and cellular mechanisms of toxic liver injury. Semin Liver Dis 2002; 22: 137–144.

    Article  CAS  PubMed  Google Scholar 

  24. Lee WM . Drug-induced hepatotoxicity. N Engl J Med 2003; 349: 474–485.

    Article  CAS  PubMed  Google Scholar 

  25. Yohe HC, O’Hara KA, Hunt JA, Kitzmiller TJ, Wood SG, Bement JL et al. Involvement of Toll-like receptor 4 in acetaminophen hepatotoxicity. Am J Physiol Gastrointest Liver Physiol 2006; 290: G1269–G1279.

    Article  CAS  PubMed  Google Scholar 

  26. Ozer J, Ratner M, Shaw M, Bailey W, Schomaker S . The current state of serum biomarkers of hepatotoxicity. Toxicology 2008; 245: 194–205.

    Article  CAS  PubMed  Google Scholar 

  27. Kaplowitz N, DeLeve LD . Drug-Induced Liver Disease, 2nd edn. Informa Healthcare: New York, 2007, xv, 808 pp.

    Google Scholar 

  28. Kudo Y, Ochi T, Shimada H, Ogawa S, Shinjo K . Utility of plasma circulating mRNA as a marker to detect hepatic injury. J Vet Med Sci 2008; 70: 993–995.

    Article  PubMed  Google Scholar 

  29. Nakken KE, Nygard S, Haaland TK, Berge KE, Odegaard A, Labori KJ et al. Gene expression profiles reflect sclerosing cholangitis activity in abcb4 (−/−) mice. Scand J Gastroenterol 2009; 44: 211–218.

    Article  CAS  PubMed  Google Scholar 

  30. Zhai Y, Shen XD, Gao F, Zhao A, Freitas MC, Lassman C et al. CXCL10 regulates liver innate immune response against ischemia and reperfusion injury. Hepatology 2008; 47: 207–214.

    Article  CAS  PubMed  Google Scholar 

  31. Yoneyama H, Kai Y, Koyama J, Suzuki K, Kawachi H, Narumi S et al. Neutralization of CXCL10 accelerates liver regeneration in carbon tetrachloride-induced acute liver injury. Med Mol Morphol 2007; 40: 191–197.

    Article  CAS  PubMed  Google Scholar 

  32. Ikemoto M, Murayama H, Itoh H, Totani M, Fujita M . Intrinsic function of S100A8/A9 complex as an anti-inflammatory protein in liver injury induced by lipopolysaccharide in rats. Clin Chim Acta 2007; 376: 197–204.

    Article  CAS  PubMed  Google Scholar 

  33. Tester AM, Cox JH, Connor AR, Starr AE, Dean RA, Puente XS et al. LPS responsiveness and neutrophil chemotaxis in vivo require PMN MMP-8 activity. PLoS ONE 2007; 2: e312.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Rosas IO, Richards TJ, Konishi K, Zhang Y, Gibson K, Lokshin AE et al. MMP1 and MMP7 as potential peripheral blood biomarkers in idiopathic pulmonary fibrosis. PLoS Med 2008; 5: e93.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Minami K, Saito T, Narahara M, Tomita H, Kato H, Sugiyama H et al. Relationship between hepatic gene expression profiles and hepatotoxicity in five typical hepatotoxicant-administered rats. Toxicol Sci 2005; 87: 296–305.

    Article  CAS  PubMed  Google Scholar 

  36. Burczynski ME, Dorner AJ . Transcriptional profiling of peripheral blood cells in clinical pharmacogenomic studies. Pharmacogenomics 2006; 7: 187–202.

    Article  CAS  PubMed  Google Scholar 

  37. Gangadharan B, Antrobus R, Dwek RA, Zitzmann N . Novel serum biomarker candidates for liver fibrosis in hepatitis C patients. Clin Chem 2007; 53: 1792–1799.

    Article  CAS  PubMed  Google Scholar 

  38. Miller T, Knapton A, Adeyemo O, Noory L, Weaver J, Hnig J . Cytochrome c: a non-invasive biomarker of drug-induced liver injury. J Appl Toxicol 2008; 28: 815–828.

    Article  CAS  PubMed  Google Scholar 

  39. Xu JJ, Henstock PV, Dunn MC, Smith AR, Chabot JR, de Graaf D . Cellular imaging predictions of clinical drug-induced liver injury. Toxicol Sci 2008; 105: 97–105.

    Article  CAS  PubMed  Google Scholar 

  40. Merrick BA, Bruno ME, Madenspacher JH, Wetmore BA, Foley J, Pieper R et al. Alterations in the rat serum proteome during liver injury from acetaminophen exposure. J Pharmacol Exp Ther 2006; 318: 792–802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Amacher DE, Adler R, Herath A, Townsend RR . Use of proteomic methods to identify serum biomarkers associated with rat liver toxicity or hypertrophy. Clin Chem 2005; 51: 1796–1803.

    Article  CAS  PubMed  Google Scholar 

  42. Merrick BA . The plasma proteome, adductome and idiosyncratic toxicity in toxicoproteomics research. Brief Funct Genomics Proteomic 2008; 7: 35–49.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the National Center for Toxicogenomics at the National Institute of Environmental Health Sciences (NIEHS) for the hepatotoxicant compendium data. In addition, we thank the participants of MAQC-II for comments, feedback, and discussions on the topic of this paper during teleconferences and face-to-face project meetings. We also thank K Shockley, A Merrick, S Hester, B Ward, and D Mendrick for their critical review of the manuscript. JH acknowledge the support of the Oak Ridge Institute for Science and Education (ORISE) for the Post-graduate Research Program at the National Center for Toxicological Research (NCTR), US Food and Drug Administration (FDA). JH also acknowledges the support of the China State-funded Study Abroad Program that is organized by the China Scholarship Council (CSC). JH and XF both acknowledge the Chinese Key Technologies R&D Program (No. 2005CB23402) and the National Science Foundation of China (No. 30801556) for support to participate in the MAQC-II project at the NCTR/FDA. This research was supported, in part by, the Intramural Research Program of the NIH and NIEHS (Z01 ES102345-03). This document has been reviewed in accordance with the US FDA and Environmental Protection Agency (EPA) policies and is approved for publication. Approval does not signify that the contents necessarily reflect the position or opinions of the FDA or EPA nor does mention of trade names or commercial products constitute endorsement or recommendation for use. The findings, views, and conclusions in this report are those of the authors and do not necessarily represent or reflect the views of the FDA or EPA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P R Bushel.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the The Pharmacogenomics Journal website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, J., Shi, W., Zhang, J. et al. Genomic indicators in the blood predict drug-induced liver injury. Pharmacogenomics J 10, 267–277 (2010). https://doi.org/10.1038/tpj.2010.33

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/tpj.2010.33

Keywords

This article is cited by

Search

Quick links