Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Interaction networks of lithium and valproate molecular targets reveal a striking enrichment of apoptosis functional clusters and neurotrophin signaling

Abstract

The overall neurobiological mechanisms by which lithium and valproate stabilize mood in bipolar disorder patients have yet to be fully defined. The therapeutic efficacy and dissimilar chemical structures of these medications suggest that they perturb both shared and disparate cellular processes. To investigate key pathways and functional clusters involved in the global action of lithium and valproate, we generated interaction networks formed by well-supported drug targets. Striking functional similarities emerged. Intersecting nodes in lithium and valproate networks highlighted a strong enrichment of apoptosis clusters and neurotrophin signaling. Other enriched pathways included MAPK, ErbB, insulin, VEGF, Wnt and long-term potentiation indicating a widespread effect of both drugs on diverse signaling systems. MAPK1/3 and AKT1/2 were the most preponderant nodes across pathways suggesting a central role in mediating pathway interactions. The convergence of biological responses unveils a functional signature for lithium and valproate that could be key modulators of their therapeutic efficacy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Cade JFJ . Lithium salts in the treatment of psychotic excitement. Med J Australia 1949; 2: 349–352.

    CAS  PubMed  Google Scholar 

  2. Belmaker RH . Bipolar disorder. N Engl J Med 2004; 351: 476–486.

    Article  CAS  PubMed  Google Scholar 

  3. Berridge MJ, Downes CP, Hanley MR . Neural and developmental actions of lithium: a unifying hypothesis. Cell 1989; 59: 411–419.

    Article  CAS  PubMed  Google Scholar 

  4. Klein PS, Melton DA . A molecular mechanism for the effect of lithium on development. Proc Natl Acad Sci 1996; 93: 8455–8459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. McColl G, Killilea DW, Hubbard AE, Vantipalli MC, Melov S, Lithgow GJ . Pharmacogenetic analysis of lithium-induced delayed aging in Caenorhabditis elegans. J Biol Chem 2008; 283: 350–357.

    Article  CAS  PubMed  Google Scholar 

  6. Poustka AJ, Kühn A, Groth D, Weise V, Yaguchi S, Burke RD et al. A global view of gene expression in lithium and zinc treated sea urchin embryos: new components of gene regulatory networks. Genome Biol 2007; 8: R85.1–R85.18.

    Article  CAS  Google Scholar 

  7. Bro C, Regenberg B, Lagniel G, Labarre J, Montero-Lomel M, Nielsen J . Transcriptional, proteomic, and metabolic responses to lithium in galactose-grown yeast cells. J Biol Chem 2003; 278: 32141–32149.

    Article  CAS  PubMed  Google Scholar 

  8. Manji HK, Moore GJ, Chen G . Bipolar disorder: leads from the molecular and cellular mechanisms of action of mood stabilizers. Br J Psychiatry Suppl 2001; 41: s107–s119.

    Article  CAS  PubMed  Google Scholar 

  9. Chuang D-M, Chen R-W, Chalecka-Franaszek E, Ren M, Hashimoto R, Senatorov V, Kanai H et al. Neuroprotective effects of lithium in cultured cells and animal models of diseases. Bipolar Disord 2002; 4: 129–136.

    Article  CAS  PubMed  Google Scholar 

  10. Göttlicher M, Minucci S, Zhu P, Krämer OH, Schimpf A, Giavara S et al. Valproic acid defines a novel class of HDAC inhibitors inducing differentiation of transformed cells. EMBO J 2001; 20: 6969–6978.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Phiel CJ, Zhang F, Huang EY, Guenther MG, Lazar MA, Klein PS . Histone deacetylase is a direct target of valproic acid, a potent anticonvulsant, mood stabilizer and teratogen. J Biol Chem 2001; 276: 36734–36741.

    Article  CAS  PubMed  Google Scholar 

  12. Hao Y, Creson T, Zhang L, Li P, Du F, Yuan P, Gould TD et al. Mood stabilizer valproate promotes ERK pathway-dependent cortical neuronal growth and neurogenesis. J. Neurosci 2004; 24: 6590–6599.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Leng Y, Liang M-H, Ren M, Marinova Z, Leeds P, Chuang D-M . Synergistic neuroprotective effects of lithium and valproic acid or histone deacetylase inhibitors in neurons: roles of glycogen synthase kinase-3 inhibition. J. Neurosci 2008; 28: 2576–2588.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chalecka-Franaszek E, Chuang DM . Lithium activates the serine/threonine kinase Akt-1 and suppresses glutamate-induced inhibition of Akt-1 activity in neurons. Proc Natl Acad Sci USA 1999; 96: 8745–8750.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sasaki T, Han F, Shioda N, Moriguchi S, Kasahara J, Ishiguro K et al. Lithium-induced activation of Akt and CaM kinase II contributes to its neuroprotective action in a rat microsphere embolism model. Brain Res 2006; 1108: 98–106.

    Article  CAS  PubMed  Google Scholar 

  16. Sinha D, Wang Z, Ruchalski KL, Levine JS, Krishnan S, Lieberthal W et al. Lithium activates the Wnt and phosphatidylinositol 3-kinase Akt signaling pathways to promote cell survival in the absence of soluble survival factors. Am J Physiol Renal Physiol 2005; 288: F703–F713.

    Article  CAS  PubMed  Google Scholar 

  17. Erdal E, Ozturk N, Cagatay T, Emel Eksioglu-Demiralp E, Ozturk M . Lithium-mediated downregulation of PKB/Akt and cyclin E with growth inhibition in hepatocellular carcinoma cells. Int J Cancer 2005; 115: 903–910.

    Article  CAS  PubMed  Google Scholar 

  18. Nemoto T, Kanai T, Yanagita T, Satoh S, Maruta T, Yoshikawa N et al. Regulation of Akt mRNA and protein levels by glycogen synthase kinase-3β in adrenal chromaffin cells: effects of LiCl and SB216763. Eur J Pharmacol 2008; 586: 82–89.

    Article  CAS  PubMed  Google Scholar 

  19. Zhang WV, Jüllig M, Connolly AR, Stott NS . Early gene response in lithium chloride induced apoptosis. Apoptosis 2005; 10: 75–90.

    Article  CAS  PubMed  Google Scholar 

  20. Nielsen J, Hoffert JD, Knepper MA, Agre P, Nielsen S, Fenton RA . Proteomic analysis of lithium-induced nephrogenic diabetes insipidus: mechanisms for aquaporin 2 down-regulation and cellular proliferation. Proc Natl Acad Sci USA 2008; 105: 3634–3639.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zellmer S, Schmidt-Heck W, Gaunitz F, Baldysiak-Figie A, Guthke R, Gebhardt R . Dynamic network reconstruction from gene expression data describing the effect of LiCl stimulation on hepatocytes. J Integr Bioinform 2005; 2: 11–26.

    Google Scholar 

  22. McQuillin A, Rizig M, Gurling HM . A microarray gene expression study of the molecular pharmacology of lithium carbonate on mouse brain mRNA to understand the neurobiology of mood stabilization and treatment of bipolar affective disorder. Pharmacogenet Genomics 2007; 17: 605–617.

    Article  CAS  PubMed  Google Scholar 

  23. Chen R-W, Chuang D-M . Long term lithium treatment suppresses p53 and Bax expression but increases Bcl-2 expression. J Biol Chem 1999; 274: 6039–6042.

    Article  CAS  PubMed  Google Scholar 

  24. Chen G, Zeng WZ, Yuan PX, Huang LD, Jiang YM, Zhao ZH et al. The mood-stabilizing agents lithium and valproate robustly increase the levels of the neuroprotective protein bcl-2 in the CNS. J Neurochem 1999; 72: 879–882.

    Article  CAS  PubMed  Google Scholar 

  25. Huang X, Wu D-Y, Chen G, Manji H, Chen DF . Support of retinal ganglion cell survival and axon regeneration by lithium through a Bcl-2–dependent mechanism. Invest Ophthalmol Vis Sci 2003; 44: 347–354.

    Article  PubMed  Google Scholar 

  26. Bush AL, Hyson RL . Lithium increases Bcl-2 expression in chick cochlear nucleus and protects against deafferentation-induced cell death. Neuroscience 2006; 138: 1341–1349.

    Article  CAS  PubMed  Google Scholar 

  27. Fukumoto T, Morinobu S, Okamoto Y, Kagaya A, Yamawaki S . Chronic lithium treatment increases the expression of brain-derived neurotrophic factor in the rat brain. Psychopharmacology 2001; 158: 100–106.

    Article  CAS  PubMed  Google Scholar 

  28. Omata N, Murata T, Takamatsu S, Maruoka N, Mitsuya H, Yonekura Y et al. Neuroprotective effect of chronic lithium treatment against hypoxia in specific brain regions with upregulation of cAMP response element binding protein and brain-derived neurotrophic factor but not nerve growth factor: comparison with acute lithium treatment. Bipolar Disord 2008; 10: 360–368.

    Article  CAS  PubMed  Google Scholar 

  29. Einat H, Yuan P, Gould TD, Li J, Du JH, Zhang L et al. The role of the extracellular signal-regulated kinase signaling pathway in mood modulation. J Neurosci 2003; 23: 7311–7316.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yasuda S, Liang MH, Marinova Z, Yahyavi A, Chuang DM . The mood stabilizers lithium and valproate selectively activate the promoter IV of brain-derived neurotrophic factor in neurons. Mol Psychiatry 2009; 14: 51–59.

    Article  CAS  PubMed  Google Scholar 

  31. Angelucci F, Aloe L, Jiménez-Vasquez P, Mathé AA . Lithium treatment alters brain concentrations of nerve growth factor, brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor in a rat model of depression. Int J Neuropsychopharmacol 2003; 6: 225–231.

    Article  CAS  PubMed  Google Scholar 

  32. O’Brien TW, Klein PS . Validating GSK3 as an in vivo target of lithium action. Biochem Soc Trans 2009; 37: 1133–1138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mendes CT, Mury FB, Mury, de Sa’ Moreira E, Alberto FL, Forlenza OV et al. Lithium reduces Gsk3b mRNA levels: implications for Alzheimer disease. Eur Arch Psychiatry Clin Neurosci 2009; 259: 16–22.

    Article  PubMed  Google Scholar 

  34. Parthasarathy LK, Seelan RS, Wilson MA, Parthasarathy RN . Regional changes in rat brain inositol monophosphatase I (IMPase 1) activity with chronic lithium treatment. Prog Neuro-Psychophamacol Biol Psychiatry 2002; 27: 55–60.

    Article  Google Scholar 

  35. Shamir A, Shaltiel G, Greenberg ML, Belmaker RH, Agam G . The effect of lithium on expression of genes for inositol biosynthetic enzymes in mouse hippocampus; a comparison with the yeast model. Brain Res Mol Brain Res 2003; 115: 104–110.

    Article  CAS  PubMed  Google Scholar 

  36. Fatemi SH, Reutiman TJ, Folsom TD . The role of lithium in modulation of brain genes: relevance for aetiology and treatment of bipolar disorder. Biochem Soc Trans 2009; 37: 1090–1095.

    Article  CAS  PubMed  Google Scholar 

  37. Rodriguez ML, Yubero P, Iglesias R, Giralt M, Villarroya F . Lithium inhibits brown adipocyte differentiation. FEBS Lett 2005; 579: 1670–1674.

    Article  CAS  Google Scholar 

  38. Seelan RS, Khalyfa A, Lakshmanan J, Casanova MF, Parthasarathy RN . Deciphering the lithium transcriptome: microarray profiling of lithium-modulated gene expression in human neuronal cells. Neuroscience 2008; 151: 1184–1197.

    Article  CAS  PubMed  Google Scholar 

  39. Brandish PE, Su M, Holder DJ, Hodor P, Szumiloski J, Kleinhanz RR et al. Regulation of gene expression by lithium and depletion of inositol in slices of adult rat cortex. Neuron 2005; 45: 861–872.

    Article  CAS  PubMed  Google Scholar 

  40. Cordeiro ML, Umbach JA, Gundersen CB . Lithium ions up-regulate mRNAs encoding dense-core vesicle proteins in nerve growth factor-differentiated PC12 cells. J Neurochem 2000; 75: 2622–2625.

    Article  CAS  PubMed  Google Scholar 

  41. Corena-McLeod M dP, Oliveros A, Charlesworth C, Madden B, Liang YQ, Boules M et al. Paliperidone as a mood stabilizer: a pre-frontal cortex synaptoneurosomal proteomics comparison with lithium and valproic acid after chronic treatment reveals similarities in protein expression. Brain Res 2008; 1233: 8–19.

    Article  CAS  Google Scholar 

  42. Bosetti F, Seemann R, Bell JM, Zahorchak R, Friedman E, Rapoport SI et al. Analysis of gene expression with cDNA microarrays in rat brain after 7 and 42 days of oral lithium administration. Brain Res Bull 2002; 57: 205–209.

    Article  CAS  PubMed  Google Scholar 

  43. Hallcher LM, Sherman WR . The effects of lithium ion and other agents on the activity of myo-inositol-1-phosphatase from bovine brain. J Biol Chem 1980; 255: 10896–10901.

    CAS  PubMed  Google Scholar 

  44. Adams JM, Cory S . The bcl-2 protein family: arbiters of cell survival. Science 1998; 281: 1322–1326.

    Article  CAS  PubMed  Google Scholar 

  45. Hashimoto R, Takei N, Shimazu K, Christ L, Lu B, Chuang D-M . Lithium induces brain-derived neurotrophic factor and activates TrkB in rodent cortical neurons: an essential step for neuroprotection against glutamate excitotoxicity. Neuropharmacology 2002; 43: 1173–1179.

    Article  CAS  PubMed  Google Scholar 

  46. Chetcuti A, Adams LJ, Mitchell PB, Schofield PR . Microarray gene expression profiling of mouse brain mRNA in a model of lithium treatment. Psychiatr Genet 2008; 18: 64–72.

    Article  PubMed  Google Scholar 

  47. Wood JR, Nelson-Degrave VL, Jansen E, McAllister JM, Mosselman S, Strauss III JF . Valproate-induced alterations in human theca cell gene expression: clues to the association between valproate use and metabolic side effects. Physiol Genomics 2005; 20: 233–243.

    Article  CAS  PubMed  Google Scholar 

  48. Chen J, Ghazawi FM, Bakkar W, Li Q . Valproic acid and butyrate induce apoptosis in human cancer cells through inhibition of gene expression of Akt/protein kinase B. Mol Cancer 2006; 5: 71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Creson TK, Yuan P, Manji HK, Chen G . Evidence for the involvement of ERK, PI3 K, and RSK in induction of Bcl-2 by valproate. J Mol Neurosci 2009; 37: 123–134.

    Article  CAS  PubMed  Google Scholar 

  50. Fukuchi M, Nii T, Ishimaru N, Minamino A, Hara D, Takasaki I, Tabuchi A, Tsuda M . Valproic acid induces up- or down-regulation of gene expression responsible for the neuronal excitation and inhibition in rat cortical neurons through its epigenetic actions. Neurosci Res 2009; 65: 35–43.

    Article  CAS  PubMed  Google Scholar 

  51. Gurpur PV, Liu J, Burkin DJ, Kaufman SJ . Valproic acid activates the PI3K/Akt/mTOR pathway in muscle and ameliorates pathology in a mouse model of Duchenne muscular dystrophy. Am J Pathol 2009; 174: 999–1008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Shen WT, Wong TS, Chung W-Y, Wong MG, Kebebew E, Duh Q-Y, Clark OH . Valproic acid inhibits growth, induces apoptosis, and modulates apoptosis-regulatory and differentiation gene expression in human thyroid cancer cells. Surgery 2005; 138: 979–985.

    Article  PubMed  Google Scholar 

  53. Wu X, Chen PS, Dallas S, Wilson B, Block ML, Wang C-C et al. Histone deacetylase inhibitors up-regulate astrocyte GDNF and BDNF gene transcription and protect dopaminergic neurons. Int J Neuropsychopharmacol 2008; 11: 1123–1134.

    Article  CAS  PubMed  Google Scholar 

  54. de Sarno P, Li X, Jope RS . Regulation of Akt and glycogen synthase-3β phosphorylation by sodium valproate and lithium. Neuropharmacology 2002; 43: 1158–1164.

    Article  CAS  PubMed  Google Scholar 

  55. Kim AJ, Shi Y, Austin RC, Werstuck GH . Valproate protects cells from ER stress-induced lipid accumulation and apoptosis by inhibiting glycogen synthase kinase-3. J Cell Sci 2005; 118: 89–99.

    Article  CAS  PubMed  Google Scholar 

  56. Jurata LW, Bukhman YV, Charles V, Capriglione F, Bullard J, Lenire AL et al. Comparison of microarray-based mRNA profiling technologies for identification of psychiatric disease and drug signatures. J Neurosci Methods 2004; 138: 173–188.

    Article  CAS  PubMed  Google Scholar 

  57. Milutinovic S, D’Alessio AC, Detich N, Szyf M . Valproate induces widespread epigenetic reprogramming which involves demethylation of specific genes. Carcinogenesis 2007; 28: 560–571.

    Article  CAS  PubMed  Google Scholar 

  58. Jergil M, Kultima K, Gustafson A-L, Dencker L, Stigson M . Valproic acid-induced deregulation in vitro of genes associated with neural tube defects. Toxicol Sci 2009; 108: 132–148.

    Article  CAS  PubMed  Google Scholar 

  59. Stamatopoulos B, Meuleman N, De Bruyn, Mineur P, Martiat P, Bron D, Lagneaux L . Antileukemic activity of valproic acid in chronic lymphocytic leukemia B cells defined by microarray analysis. Leukemia 2009; 23: 2281–2289.

    Article  CAS  PubMed  Google Scholar 

  60. Sugawara H, Iwamoto K, Bundo M, Ishiwata M, Ueda J, Kakiuchi C et al. Effect of mood stabilizers on gene expression in lymphoblastoid cells. J Neural Transm 2010; 117: 155–164.

    Article  CAS  PubMed  Google Scholar 

  61. Kultima K, Nyström A-M, Scholz B, Gustafson A-L, Dencker L, Stigson M . Valproic acid teratogenicity: a toxicogenomics approach. Environ Health Persp 2004; 112: 1225–1234.

    Article  CAS  Google Scholar 

  62. Kultima K, Jergil M, Salter H, Gustafson A-L, Dencker L, Stigson M . Early transcriptional responses in mouse embryos as a basis for selection of molecular markers predictive of valproic acid teratogenecity. Reprod Toxicol 2010; 30: 457–468.

    Article  CAS  PubMed  Google Scholar 

  63. Ogden CA, Rich ME, Schork NJ, Paulus MP, Geyer MA, Lohr JB et al. Candidate genes, pathways and mechanisms for bipolar disorder (manic-depressive) and related disorders: an expanded convergent functional genomics approach. Mol Psychiatry 2004; 9: 1007–1029.

    Article  CAS  PubMed  Google Scholar 

  64. Bosetti F, Bell KM, Manickam P . Microarray analysis of rat brain gene expression after chronic administration of sodium valproate. Brain Res Bull 2005; 65: 331–338.

    Article  CAS  PubMed  Google Scholar 

  65. Chetcuti A, Adams LJ, Mitchell PB, Schofield PR . Altered gene expression in mice treated with the mood stabilizer sodium valproate. Int J Neuropsychopharmacol 2005; 9: 267–276.

    Article  CAS  PubMed  Google Scholar 

  66. Wang J-F, Bown C, Young LT . Differential display PCR reveals novel targets for the mood-stabilizing drug valproate including the molecular chaperone GRP78. Mol Pharmacol 1999; 55: 521–527.

    Article  CAS  PubMed  Google Scholar 

  67. Baumeister P, Dong D, Fu Y, Lee AS . Transcriptional induction of GRP78/BiP by histone deacetylase inhibitors and resistance to histone deacetylase inhibitor-induced apoptosis. Mol Cancer Ther 2009; 8: 1086–1094.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Venkataramani V, Rossner C, Iffland L, Schweyer S, Tamboli IY, Walter J et al. Histone deacetylase inhibitor valproic acid inhibits cancer cell proliferation via down-regulation of the Alzheimer amyloid precursor protein. J Biol Chem 2010; 285: 10678–10689.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Watson DG, Watterson JM, Lenox RH . Sodium valproate down-regulates the myristoylated alanine-rich C kinase substrate (MARCKS) in immortalized hippocampal cells: a property of protein kinase C-mediated mood stabilizers. J Pharmacol Expt Ther 1998; 285: 307–316.

    CAS  Google Scholar 

  70. Jayapandian M, Chapman A, Tarcea VG, Yu C, Elkiss A, Ianni A et al. Michigan Molecular Interactions (MiMI): putting the jigsaw puzzle together. Nucl Acids Res 2007; 35: D566–D571.

    Article  CAS  PubMed  Google Scholar 

  71. Gao J, Ade AS, Tarcea VG, Weymouth T E, Mirel BR, Jagadish HV, States DJ . Integrating and Annotating the Interactome using the MiMI plugin for Cytoscape. Bioinformatics 2009; 25: 137–138.

    Article  CAS  PubMed  Google Scholar 

  72. Ferrell Jr JE . Q&A: Systems biology. J Biol 2009; 8: 2.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Su G, Kuchinsky A, Morris JH, States DJ, Meng F . GLay: community structure analysis of biological networks. Bioinformatics 2010; 26: 3135–3137.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Huang DW, Sherman BT, Lempicki RA . Systematic and integrative analysis of large gene lists using DAVID Bioinformatics Resources. Nat Protoc 2009; 4: 44–57.

    Article  CAS  Google Scholar 

  75. Nakatani N, Hattori E, Ohnishi T, Dean B, Iwayama Y, Matsumoto I et al. Genome-wide expression analysis detects eight genes with robust alterations specific to bipolar I disorder: relevance to neuronal network perturbation. Hum Mol Genet 2006; 15: 1949–1962.

    Article  CAS  PubMed  Google Scholar 

  76. Gonzalez E, McGraw TE . The Akt kinases. Cell Cycle 2009; 8: 2502–2508.

    Article  CAS  PubMed  Google Scholar 

  77. Lee HJ, Kim MK, Hee J, Kim HJ, Kim SU . Human neural stem cells genetically modified to overexpress Akt1 provide neuroprotection and functional improvement in mouse stroke model. PLoS ONE 2009; 4: e5586.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Beaulieu J-M, Gainetdinov RR, Caron MG . Akt/GSK3 signaling in the action of psychotropic drugs. Annu Rev Pharmacol Toxicol 2009; 49: 327–347.

    Article  CAS  PubMed  Google Scholar 

  79. Lai W-S, Xu B, Westphal KGC, Paterlini M, Olivier B, Pavlidis P et al. Akt1 deficiency affects neuronal morphology and predisposes to abnormalities in prefrontal cortex functioning. Proc Natl Acad Sci USA 2006; 103: 16906–16911.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Satoh Y, Endo S, Ikeda T, Yamada K, Ito M, Kuroki M et al. Extracellular signal-regulated kinase 2 (ERK2) knockdown mice show deficits in long-term; ERK2 has a specific function in learning and memory. J Neurosci 2007; 27: 10765–10776.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Mazzucchelli C, Vantaggiato C, Ciamei A, Fasano S, Pakhotin P, Krezel W et al. Knockout of ERK1/MAP kinase enhances synaptic plasticity in the striatum and facilitates striatal-mediated learning and memory. Neuron 2002; 34: 807–820.

    Article  CAS  PubMed  Google Scholar 

  82. Detera-Wadleigh SD . Lithium-related genetics of bipolar disorder. Ann Med 2001; 33: 272–285.

    Article  CAS  PubMed  Google Scholar 

  83. Alda M, Grof P, Rouleau GA, Turecki G, Young LT . Investigating responders to lithium prophylaxis as a strategy for mapping susceptibility genes for bipolar disorder. Prog Neuropsychopharmacol Biol Psychiatry 2005; 29: 1038–1045.

    Article  CAS  PubMed  Google Scholar 

  84. Cruceanu C, Alda M, Turecki G . Lithium: a key to the genetics of bipolar disorder. Genome Med 2009; 1: 79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Detera-Wadleigh SD, Yoshikawa T . Decoding the genetics and underlying mechanisms of mood disorders. In: Wildernauer D (ed). Molecular Biology of Psychiatric Disorders, Gross HJ (ed). Nucleic Acids and Molecular Biology 23 Springer-Verlag: Berlin Heidleberg, 2009 pp 1–50.

    Google Scholar 

  86. Perlis RH, Smoller JW, Ferreira MA, McQuillin A, Bass N, Lawrence J et al. A genomewide association study of response to lithium for prevention of recurrence in bipolar disorder. Am J Psychiatry 2009; 166: 718–725.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Schulze TG, Alda M, Adli M, Akula N, Ardau R, Chillotti C et al. The international consortium on lithium genetics (ConLigen)—an initiative by the NIMH and IGSLI to study the genetic basis of response to lithium treatment. Neuropsychobiology 2010; 62: 72–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Ferreira MAR, O’Donovan MC, Meng YA, Jones IR, Ruderfer DM, Jones L et al. Collaborative genome-wide association analysis supports a role for ANK3 and CACNA1C in bipolar disorder. Nat Genet 2008; 40: 1056–1058.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Shi J, Levinson DF, Duan J, Sanders AR, Zheng Y, Pe’er I, Dudbridge F et al. Common variants on chromosome 6p22.1 are associated with schizophrenia. Nature 2009; 460: 753–757.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. McMahon FJ, Akula N, Schulze TG, Muglia P, Tozzi F, Detera-Wadleigh SD et al. Meta-analysis of genome-wide association data identifies a risk locus for major mood disorders on 3p21.1. Nat Genet 2010; 42: 128–131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Emamian ES, Hall D, Birnbaum MJ, Karayiorgou M, Gogos JA . Convergent evidence for impaired AKT1-GSK3beta signaling in schizophrenia. Nat Genet 2004; 36: 131–137.

    Article  CAS  PubMed  Google Scholar 

  92. Toyota T, Yamada K, Detera-Wadleigh SD, Yoshikawa T . Analysis of a cluster of polymorphisms in AKT1 gene in bipolar pedigrees: a family-based association study. Neuroscience Lett 2003; 339: 5–8.

    Article  CAS  Google Scholar 

  93. Pietiläinen OP, Paunio T, Loukola A, Tuulio-Henriksson A, Kieseppä T, Thompson P et al. Association of AKT1 with verbal learning, verbal memory, and regional cortical gray matter density in twins. Am J Med Genet B Neuropsychiatr Genet 2009; 150B: 683–692.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Kim JY, Duan X, Liu CY, Jang MH, Guo JU, Pow-anpongku N et al. DISC1 regulates new neuron development in the adult brain via modulation of AKT-mTOR signaling through KIAA1212. Neuron 2009; 63: 761–773.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Mao Y, Ge X, Frank CL, Madison JM, Koehler AN, Doud MK et al. Disrupted in schizophrenia 1 regulates neuronal progenitor proliferation via modulation of GSK3beta/beta-catenin signaling. Cell 2009; 136: 1017–1031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Brandon NJ, Millar JK, Korth C, Sive H, Singh KK, Sawa A . Understanding the role of DISC1 in psychiatric disease and during normal development. J Neurosci 2009; 29: 12768–12775.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. St Clair D, Blackwood D, Muir W, Carothers A, Walker M, Spowart G et al. Association within a family of a balanced autosomal translocation with major mental illness. Lancet 1990; 336: 13–16.

    Article  CAS  PubMed  Google Scholar 

  98. Millar JK, Wilson-Annan JC, Anderson S, Christie S, Taylor MS, Semple CA et al. Disruption of two novel genes by a translocation co-segregating with schizophrenia. Hum Mol Genet 2000; 9: 1415–1423.

    Article  CAS  PubMed  Google Scholar 

  99. Blackwood DH, Fordyce A, Walker MT, St Clair DM, Porteous DJ, Muir WJ . Schizophrenia and affective disorders-cosegregation with a translocation at chromosome 1q42 that directly disrupts brain-expressed genes: clinical and P300 findings in a family. Am J Hum Genet 2001; 69: 428–433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Stefansson H, Sigurdsson E, Steinthorsdottir V, Bjornsdottir S, Sigmundsson T, Ghosh S et al. Neuregulin 1 and susceptibility to schizophrenia. Am J Hum Genet 2002; 71: 877–892.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Goes FS, Willour VL, Zandi PP, Belmonte PL, MacKinnon DF, Mondimore FM et al. Family-based association study of Neuregulin 1 with psychotic bipolar disorder. Am J Med Genet B Neuropsychiatr Genet 2009; 150B: 693–702.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the Intramural Research Program of the National Institute of Mental Health, National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S D Detera-Wadleigh.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the The Pharmacogenomics Journal website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gupta, A., Schulze, T., Nagarajan, V. et al. Interaction networks of lithium and valproate molecular targets reveal a striking enrichment of apoptosis functional clusters and neurotrophin signaling. Pharmacogenomics J 12, 328–341 (2012). https://doi.org/10.1038/tpj.2011.9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/tpj.2011.9

Keywords

This article is cited by

Search

Quick links